The current study was to examine the reliability and effectiveness of using most abundant, inexpensive waste in the form of scrap raw zero valent aluminum ZVAI and zero valent iron ZVI for the capture, retard, and removal of one of the most serious and hazardous heavy metals cadmium dissolved in water. Batch tests were conducted to examine contact time (0-250) min, sorbent dose (0.25-1 g ZVAI/100 mL and 2-8 g ZVI/100 mL), initial pH (3-6), pollutant concentration of 50mg/L initially, and speed of agitation (0-250) rpm . Maximum contaminant removal efficiency corresponding to (90 %) for cadmium at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained. Langmuir and Freundlich isotherms were presumed to fit the batch kinetics data for the sorption of Cd(II) onto ZVAI and/or ZVI and found that Langmuir (I) was the most representative model type with coefficient of determination R2 greater than 0.9115. Kinetics data for the sorption of Cd(II) onto ZVAI/ZVI mixture and due to the good agreement between the fitted and the experimental results; the data was found to obey the pseudo second order model. The scanning electron microscopy (SEM) for the ZVI and ZVAI was conducted before and after the sorbent-liquid reaction and revealed distinct morphological changes in the sorbent surface due to the contaminant saturation and pore channel blockages that ceased the sorption process.
The complexity of multimedia contents is significantly increasing in the current world. This leads to an exigent demand for developing highly effective systems to satisfy human needs. Until today, handwritten signature considered an important means that is used in banks and businesses to evidence identity, so there are many works tried to develop a method for recognition purpose. This paper introduced an efficient technique for offline signature recognition depending on extracting the local feature by utilizing the haar wavelet subbands and energy. Three different sets of features are utilized by partitioning the signature image into non overlapping blocks where different block sizes are used. CEDAR signature database is used as a dataset f
... Show MoreImage Fusion Using A Convolutional Neural Network
Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure.
In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water.
The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity
... Show MoreThe proliferation of cellular network enabled users through various positioning tools to track locations, location information is being continuously captured from mobile phones, created a prototype that enables detected location based on using the two invariant models for Global Systems for Mobile (GSM) and Universal Mobile Telecommunications System (UMTS). The smartphone application on an Android platform applies the location sensing run as a background process and the localization method is based on cell phones. The proposed application is associated with remote server and used to track a smartphone without permissions and internet. Mobile stored data location information in the database (SQLite), then transfer it into location AP
... Show MoreUsed automobile oils were subjected to filtration to remove solid material and dehydration to remove water, gasoline and light components by using vacuum distillation under moderate pressure, and then the dehydrated waste oil is subjected to extraction by using liquid solvents. Two solvents, namely n-butanol and n-hexane were used to extract base oil from automobile used oil, so that the expensive base oil can be reused again.
The recovered base oil by using n-butanol solvent gives (88.67%) reduction in carbon residue, (75.93%) reduction in ash content, (93.73%) oil recovery, (95%) solvent recovery and (100.62) viscosity index, at (5:1) solvent to used oil ratio and (40 oC) extraction temperature, while using n-hexane solvent gives (6
Electrospinning is a novel technique that can be used to produce highly porous fibers with highly tunable properties. In this research, this technique is adopted to prepare the electrospun nanofiber membrane for membrane distillation application. A custom-built electrospinning setup was made to prepare the nanofibers membrane. Polyvinylidene fluoride (PVDF) polymer was used in the electrospinning process due to its high hydrophobicity. Electrospun (PVDF) nanofibers were tested in direct contact membrane distillation (DCMD) process using 0.6 M sodium chloride as a feed solution. The resulting nanofiber membrane exhibited high performance in DCMD (i.e. relatively high water flux and high salt rejection). It has been found
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreRecognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show More