Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered from five drilled wells were involved in modeling process.Approximatlly,85 % of these data were used for training the ANN models, and 15% to assess their accuracy and direction of stability. The results of the simulation showed good matching between the raw data and the predicted values of ROP by Artificial Neural Network (ANN) model. In addition, a good fitness was obtained in the estimation of drilling cost from ANN method when compared to the raw data.
Background: Assessment is an important part of the learning cascade in education. Students realize it as an influential motivator to direct and guide their learning. The method of assessment determines the way the students reach high levels of learning. It has been documented that one of factor affecting students’ choice of learning approach is the way how assessment is being performed. Many methods of assessment namely multiple choice questions, essay questions and others are mainly used to assess basic science knowledge in undergraduate education. Objectives: The aim of this study is to compare multiple choice questions (MCQ) and essay questions (EQ) (record the success and failure rate of multiple choice questions (MCQ) and essay quest
... Show MoreErythrocytes aggregation is an important physiological phenomenon in the circulation of blood, and is a basic characteristic of normal blood that plays a major role in cardiovascular system especially in the microcirculation. Blood samples have been taken from (30) volunteers (15 male, and 15 female), their ages (20-30) years. The Erythrocytes Sedimentation Rate (ESR) for those subjects was measured at different Packed Cells Volume (PCV) (10%-25%), and also it was measured at different temperature (10oC-25oC). The results show that there was a highly significant decrease (P<0.01) in ESR when the PCV increase and a highly significant increase (P<0.01) in ESR when the temperatures increase. The conclusion from these results is that the ESR va
... Show MoreThe temperature influence on the fluorescence lifetime, quantum yields and non-radiative rate parameter or coumarin 460 dye dissolved in methanol was investigated in the temperature range (160-300 k). A single photon counting technique was used or measuring the fluorescence decay curves. A noticeable decrease of the fluorescence lifetime with increasing the temperature was observed. The non-radiative activation energy of 10.57 K.J. mole-1 was measured by the help of Arrhenius plot.
The limitations of wireless sensor nodes are power, computational capabilities, and memory. This paper suggests a method to reduce the power consumption by a sensor node. This work is based on the analogy of the routing problem to distribute an electrical field in a physical media with a given density of charges. From this analogy a set of partial differential equations (Poisson's equation) is obtained. A finite difference method is utilized to solve this set numerically. Then a parallel implementation is presented. The parallel implementation is based on domain decomposition, where the original calculation domain is decomposed into several blocks, each of which given to a processing element. All nodes then execute computations in parall
... Show MorePrecise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables
... Show MoreSAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1. Meanwhile, the same catalyst was used to improve base oil spec
... Show MoreSAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1
... Show MoreNew nanotechnology-based approaches are increasingly being investigated for enhanced oil recovery (EOR), with a particular focus on heavy oil reservoirs. Typically, the addition of a polymer to an injection fluid advances the sweep efficiency and mobility ratio of the fluid and leads to a higher crude oil recovery rate. However, harsh reservoir conditions, including high formation salinity and temperature, can limit the performance of such polymer fluids. Recently, nanofluids, that is, dispersions of nanoparticles (NPs) in a base fluid, have been recommended as EOR fluids; however, such nanofluids are unstable, even under ambient conditions. In this work, a combination of ZrO2 NPs and the polyacrylamide (PAM) polymer (ZrO2 NPs–PAM) was us
... Show MoreThe problem of research was to identify after the use of cost technology based on specifications in the validity of determining and measuring the costs of the implementation of contracting, by applying to al-Mansour General Construction Contracting Company as an appropriate alternative to the traditional costing system currently adopted, which is characterized by many shortcomings and weaknesses Which has been reflected in the validity and integrity of the calculations. To solve this problem, the research was based on the premise that: (The application of cost technology based on specifications will result in calculating the cost of the product according to the specification required by the customer, to meet his wishes properly and witho
... Show More