Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered from five drilled wells were involved in modeling process.Approximatlly,85 % of these data were used for training the ANN models, and 15% to assess their accuracy and direction of stability. The results of the simulation showed good matching between the raw data and the predicted values of ROP by Artificial Neural Network (ANN) model. In addition, a good fitness was obtained in the estimation of drilling cost from ANN method when compared to the raw data.
Most of the studies conducted in the past decades focused on the effect of interest rates and exchange rates on domestic investment under the assumption that the independent variables have the same effect on the dependent variable, but there were limited studies that investigated the unequal effects of changes in interest rates and exchange rates, both positive and negative, on domestic investment. This study used a nonlinear autoregressive distributed lag (NARDL) model to assess the unequal effects of the real interest rate and real exchange rate variables on domestic investment in Egypt for the period 1976 - 2020. The results revealed that positive and negative shocks for both exchange rates have unequal effects on
... Show MoreThe study objective was to conduct Pharmacoeconomics study (cost-effective analysis) between infliximab reference (Remicade) and its biosimilar (Remsima) in patients with rheumatoid arthritis (RA) in Iraqi hospitals.
This is a retrospective multicenter pharmacoeconomic analysis conducted at two large teaching governmental hospitals in Baghdad, Iraq which provided infliximab to patients with RA. Data were collected from patient’s medical records and face-to-face interviews with the patients from December 2021 to April 2022.
The study included 57 patients with rheumatoid arthritis (RA). The patients were categorized into two groups according to the type of infliximab they received over 30 weeks: 27 patients received
... Show MoreAbstract : Objectives: The aims of the study are to identify the condition causes respiratory failure in both sex and to find out the relationship between prognosis and mortality rate with condition causes respiratory failure. Methodology : Descriptive study was carried out in Al- Yarmook Hospital in Respiratory care Unit in Baghdad from the 1st of August 2003 to 1st of August 2004, the sample consist of 300 patients (150) males and (150) females, descriptive and inferential statistics procedures were applied to the data analysis Results : The results shows that 24.4% of patients effect by post-operative compl
Abstract
In this paper, fatigue damage accumulation were studied using many methods i.e.Corton-Dalon (CD),Corton-Dalon-Marsh(CDM), new non-linear model and experimental method. The prediction of fatigue lifetimes based on the two classical methods, Corton-Dalon (CD)andCorton-Dalon-Marsh (CDM), are uneconomic and non-conservative respectively. However satisfactory predictions were obtained by applying the proposed non-linear model (present model) for medium carbon steel compared with experimental work. Many shortcomings of the two classical methods are related to their inability to take into account the surface treatment effect as shot peening. It is clear that the new model shows that a much better and cons
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show More