Preferred Language
Articles
/
ijcpe-503
Prediction of penetration Rate and cost with Artificial Neural Network for Alhafaya Oil Field

Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered from five drilled wells were involved in modeling process.Approximatlly,85 % of these data were used for training the ANN models, and 15% to assess their accuracy and direction of stability. The results of the simulation showed good matching between the raw data and the predicted values of ROP by Artificial Neural Network (ANN) model. In addition, a good fitness was obtained in the estimation of drilling cost from ANN method when compared to the raw data.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Oct 07 2022
Journal Name
Texas Journal Of Engineering And Technology
Preview PDF
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Geological Journal
Optimization of Horizontal Well Location and Completion to Improve Oil Recovery for an Iraqi Field

Exploitation of mature oil fields around the world has forced researchers to develop new ways to optimize reservoir performance from such reservoirs. To achieve that, drilling horizontal wells is an effective method. The effectiveness of this kind of wells is to increase oil withdrawal. The objective of this study is to optimize the location, design, and completion of a new horizontal well as an oil producer to improve oil recovery in a real field located in Iraq. “A” is an oil and gas condensate field located in the Northeast of Iraq. From field production history, it is realized the difficulty to control gas and water production in this kind of complex carbonate reservoir with vertical producer wells. In this study, a horizont

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Sep 14 2015
Journal Name
Spe North Africa Technical Conference And Exhibition
Feasibility of Gas Lift to Increase Oil Production in an Iraqi Giant Oil Field
Abstract<p>Gas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in</p> ... Show More
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Sun Apr 02 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Traffic Classification of IoT Devices by Utilizing Spike Neural Network Learning Approach

Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas

... Show More
Scopus (3)
Crossref (3)
Scopus Crossref
View Publication
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Physics
Development and Assessment of Feed Forward Back Propagation Neural Network Models to Predict Sunshine Duration

         The duration of sunshine is one of the important indicators and one of the variables for measuring the amount of solar radiation collected in a particular area. Duration of solar brightness has been used to study atmospheric energy balance, sustainable development, ecosystem evolution and climate change. Predicting the average values of sunshine duration (SD) for Duhok city, Iraq on a daily basis using the approach of artificial neural network (ANN) is the focus of this paper. Many different ANN models with different input variables were used in the prediction processes. The daily average of the month, average temperature, maximum temperature, minimum temperature, relative humidity, wind direction, cloud level and atmosp

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Coagulation/ Flocculation, Microfiltration and Nanofiltration for Water Treatment of Main Outfall Drain for Injection in Nasiriyah Oil Field

 

The present work aims to study the efficiency of coagulation/ flocculation as 1st stage, natural gravity water filter or microfiltration (MF) as 2nd stage and nanofiltration (NF) technology as final stage for treatment of water of main outfall drain (MOD) for injection in Nasiriyah oil field. Effects of operating parameters such as coagulant dosage, speed and time of slow mixing step and settling time in the 1st stage were studied. Also feed turbidity and total suspended solids (TSS) in the 2

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 30 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Spatial Data Analysis for Geostatistical Modeling of Petrophysical Properties for Mishrif Formaiton, Nasiriya Oil Field

Spatial data analysis is performed in order to remove the skewness, a measure of the asymmetry of the probablitiy distribution. It also improve the normality, a key concept of statistics from the concept of normal distribution “bell shape”, of the properties like improving the normality porosity, permeability and saturation which can be are visualized by using histograms. Three steps of spatial analysis are involved here; exploratory data analysis, variogram analysis and finally distributing the properties by using geostatistical algorithms for the properties. Mishrif Formation (unit MB1) in Nasiriya Oil Field was chosen to analyze and model the data for the first eight wells. The field is an anticline structure with northwest- south

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Automated Stand-alone Surgical Safety Evaluation for Laparoscopic Cholecystectomy (LC) using Convolutional Neural Network and Constrained Local Models (CNN-CLM)

In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden

... Show More
Scopus Crossref
View Publication
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Development of Ratawi Oil Field, Southern Iraq

Ratawi Field is a promising hydrocarbon bearing structure conforming several reservoirs, and lies northwest of the Basrah city and west of Northern Rumaila Field. Kinetic Analysis referred to that the type of Fold of Ratawi Structure similar to the types which are associated with Salt Structure activity.Geophysical Interpretation referred to the presence of Salt Structure beneath Ratawi Structure. The Isopach Maps shows that the crest thickness is less than the limbs, this characteristics is always due to those of salt structures beneath Ratawi field. Both of Tectonic Movement and Salt Structure play a great role in forming and development of Ratawi Structure.

View Publication Preview PDF
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Building Geological Model for Tertiary Reservoir of Exploration Ismail Oil Field, North Iraq

Geologic modeling is the art of constructing a structural and stratigraphic model of a reservoir from analyses and interpretations of seismic data, log data, core data, etc. ‎[1].

   A static reservoir model typically involves four main stages, these stages are Structural modeling, Stratigraphic modeling, Lithological modeling and Petrophysical modeling ‎[2].

   Ismail field is exploration structure, located in the north Iraq, about 55 km north-west of Kirkuk city, to the north-west of the Bai Hassan field, the distance between the Bai Hassan field and Ismael field is about one kilometer ‎[3].

   Tertiary period reservoir sequences (Main Limestone), which comprise many economica

... Show More
View Publication Preview PDF