Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered from five drilled wells were involved in modeling process.Approximatlly,85 % of these data were used for training the ANN models, and 15% to assess their accuracy and direction of stability. The results of the simulation showed good matching between the raw data and the predicted values of ROP by Artificial Neural Network (ANN) model. In addition, a good fitness was obtained in the estimation of drilling cost from ANN method when compared to the raw data.
Exploitation of mature oil fields around the world has forced researchers to develop new ways to optimize reservoir performance from such reservoirs. To achieve that, drilling horizontal wells is an effective method. The effectiveness of this kind of wells is to increase oil withdrawal. The objective of this study is to optimize the location, design, and completion of a new horizontal well as an oil producer to improve oil recovery in a real field located in Iraq. “A” is an oil and gas condensate field located in the Northeast of Iraq. From field production history, it is realized the difficulty to control gas and water production in this kind of complex carbonate reservoir with vertical producer wells. In this study, a horizont
... Show MoreGas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in
This study aimed to investigate the incorporation of recycled waste compact discs (WCDs) powder in concrete mixes to replace the fine aggregate by 5%, 10%, 15% and 20%. Compared to the reference concrete mix, results revealed that using WCDs powder in concrete mixes improved the workability and the dry density. The results demonstrated that the compressive, flexural, and split tensile strengths values for the WCDs-modified concrete mixes showed tendency to increase above the reference mix. However, at 28 days curing age, the strengths values for WCDs-modified concrete mixes were comparable to those for the reference mix. The leaching test revealed that none of the WCDs constituents was detected in the leachant after 180 days. The
... Show More
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Spatial data analysis is performed in order to remove the skewness, a measure of the asymmetry of the probablitiy distribution. It also improve the normality, a key concept of statistics from the concept of normal distribution “bell shape”, of the properties like improving the normality porosity, permeability and saturation which can be are visualized by using histograms. Three steps of spatial analysis are involved here; exploratory data analysis, variogram analysis and finally distributing the properties by using geostatistical algorithms for the properties. Mishrif Formation (unit MB1) in Nasiriya Oil Field was chosen to analyze and model the data for the first eight wells. The field is an anticline structure with northwest- south
... Show More
The present work aims to study the efficiency of coagulation/ flocculation as 1st stage, natural gravity water filter or microfiltration (MF) as 2nd stage and nanofiltration (NF) technology as final stage for treatment of water of main outfall drain (MOD) for injection in Nasiriyah oil field. Effects of operating parameters such as coagulant dosage, speed and time of slow mixing step and settling time in the 1st stage were studied. Also feed turbidity and total suspended solids (TSS) in the 2
... Show More