Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered from five drilled wells were involved in modeling process.Approximatlly,85 % of these data were used for training the ANN models, and 15% to assess their accuracy and direction of stability. The results of the simulation showed good matching between the raw data and the predicted values of ROP by Artificial Neural Network (ANN) model. In addition, a good fitness was obtained in the estimation of drilling cost from ANN method when compared to the raw data.
Elastic magnetic M1 electron scattering form factor has been calculated for the ground state J,T=1/2-,1/2 of 13C. The single-particle model is used with harmonic oscillator wave function. The core-polarization effects are calculated in the first-order perturbation theory including excitations up to 5ħω, using the modified surface delta interaction (MSDI) as a residual interaction. No parameters are introduced in this work. The data are reasonably explained up to q~2.5fm-1 .
The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreThe researcher studied transportation problem because it's great importance in the country's economy. This paper which ware studied several ways to find a solution closely to the optimization, has applied these methods to the practical reality by taking one oil derivatives which is benzene product, where the first purpose of this study is, how we can reduce the total costs of transportation for product of petrol from warehouses in the province of Baghdad, to some stations in the Karsh district and Rusafa in the same province. Secondly, how can we address the Domandes of each station by required quantity which is depending on absorptive capacity of the warehouses (quantities supply), And through r
... Show MoreBack ground: Several devices with different physical bases have been developed for the clinical measurement of corneal thickness, they classified into 4 categories: Scheimpflug photography based, Slit –Scanning topography, optical coherence tomography (OCT) based and ultrasound (US) based.Objective:To evaluatethe precision of the new Scheimpflug –Placido disc corneal topography in measurement of corneal thickness and to compare the measured values with that obtained by US pachymetry.Methods: Setting of this study is Lasik center in Eye Specialty Private Hospital. Baghdad. Iraq.Eyes of healthy subjects were examined with the Sirius topography.3 consecutive measurements of central (CCT)and thinnest (TCT) corneal thicknesses were obtain
... Show MoreABSTRACT: BACKGROUND: Left ventricular hypertrophy is a significant risk factor for cardiovascular complications such as ischemic heart disease, heart failure, sudden death, atrial fibrillation, and stroke. A proper non-expensive tool is required for detection of this pathology. Different electrocardiographic (ECG) criteria were investigated; however, the results were conflicting regarding the accuracy of these criteria. OBJECTIVE: To assess the accuracy of three electrocardiographic criteria in diagnosis of left ventricular hypertrophy in adult patients with hypertension using echocardiography as a reference test. PATIENTS AND METHODS: This is a hospital-based cross sectional observational study which included 340 adult patients with a his
... Show More