The effect of time (or corrosion products formation) on corrosion rates of carbon steel pipe in aerated 0.1N NaCl
solution under turbulent flow conditions is investigated. Tests are conducted using electrochemical polarization
technique by determining the limiting current density of oxygen reduction in Reynolds number range of 15000 to 110000
and temperature range of 30 to 60oC. The effect of corrosion products formation on the friction factor is studied and
discussed. Corrosion process is analyzed as a mass transfer operation and the mass transfer theory is employed to
express the corrosion rate. The results are compared with many proposed models particularly those based on the
concept of analogy among momentum, heat, and mass transport. The capability of these models to predict corrosion
rates in presence of corrosion products is examined and discussed. It is found that formation of corrosion products with
time decreases the corrosion rate (or mass transfer rate) at low Reynolds number and temperature while it increases the
corrosion rate at high Re and temperature. It increases momentum transport and this increase depends on temperature,
Reynolds number, and corrosion rate. Increasing roughness due to the formation of corrosion products causes
overestimation of analogy correlations results by increasing friction factor and decreasing corrosion rate.
The effect of mixed corrosion inhibitors in cooling system was evaluated by using carbon steel specimens and weight loss analysis. The carbon steel specimens immersed in mixture of sodium phosphate (Na2 HPO4) used as corrosion inhibitor and sodium glocunate (C6 H11 NaO7) as a scale dispersant at different concentrations (20,40, 60, 80 ppm) and at different temperature (25,50,75 and 100)ºC for (1-5) days. The corrosion inhibitors efficiency was calculated by using uninhibited and inhibited water to give 98.1%. The result of these investigations indicate that the corrosion rate decreases with the increase the corrosion inhibitors concentration at 80 ppm and at 100ºC for 5 days, (i.e,
... Show MoreABSTRACT Background: This study measured the effects of three parameters pH value, length of immersion and type of archwire on metal ions released from orthodontic appliances. Materials and Methods: Ninety maxillary halves simulated fixed orthodontic appliances that were immersed in artificial saliva of different pH values (6.75, 5 and 3.5) during 28 day period. Three types of archwires were used: stainless steel, nickel titanium and thermal activated nickel titanium. The quantity of nickel and chromium ions was determined with the use of atomic force spectrophotometer while iron ions by spectrophotometer. Each orthodontic set was weighted two times, before the ligation and immersion in the artificial saliva and after 28 days at the end of
... Show MoreA theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namely 7-Ethyl-4-methyl-1-[(4-nitro-benzylidene)-amino]-1H-quinolin-2-one (EMNQ2O). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G/ 2d, 2p level was carried out to calculate the geometrical structure, physical properties and chemical inhibition chemical parameters, with the local reactivity in order to predict both the reactive centers and to know the possible sites of nucleophilic and electrophilic attacks, in vacuum and two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in (3.5% NaCl)
... Show MoreCorrosion of steel reinforcement is one of the biggest problems facing all countries in the world like bridges in the beach area and marine constructions which lead to study these problems and apply some economical solutions. According to the high cost of repair for these constructions, were studied the effect of using kind of chemical compounds sodium nitrite(NaNO2) and sodium silicate(Na2SiO3) as corrosion inhibitors admixture for steel bars that immersed partially in electrolyte solution (water + sodium chloride in 3% conc.) (Approximately similar to the concentration of salt in sea water). The two inhibitors above added each one to the electrolyte solution at concentrations (0.5%, 1% and 2%) for both
... Show MoreIn this study we focused on the determination of influence the novel synthesized thiosemicarbazide derivative "2-(2-hydroxy-3-methoxybenzylidene) hydrazinecarbothioamide" (HMHC) influenced the corrosion inhibition of mild steel (MS) in a 1.0 M hydrochloric acid acidic solution.This is in an effort to preserve the metal material by maintaining it from corrosion.The synthesized inhibitor was characterized using elemental analysis, and NMR-spectroscopy. Then the corrosion inhibition capability of (HMHC) was studied on mild steel in an acidic medium by weight loss technique within variables [temperature, inhibitor concentration, and time]. The immersion periods were [1:00, 3:00, 5:00, 10:00, 24:00, and 72:00] hours and the tem
... Show MoreThe inhibitive action of Phenyl Thiourea (PTU) on the corrosion of mild steel in strong Hydrochloric acid, HCl, has been investigated by weight loss and potentiostatic polarization. The effect of PTU concentration, HCl concentration, and temperature on corrosion rate of mild steel were verified using 2 levels factorial design and surface response analysis through weight loss approach, while the electrochemical measurements were used to study the behavior of mild steel in 5-7N HCl at temperatures 30, 40 and 50 °C, in absence and presence of PTU. It was verified that all variables and their interaction were statistically significant. The adsorption of (PTU) is found to obey the Langmuir adsorption isotherm. The effect of temperature on th
... Show MoreThe impact of a Schiff base namely 2-((thiophen-2-ylmethylene)amino)benzenethiol to corrode mild steel in 1 M HCl resolved was evaluated using different weight loss technique and scanning electron microscopy (SEM).different weight measurements to expand that the 2-((thiophen-2-ylmethylene) amino) benzenethiol inhibits the corrosion of mild steel through adsorbing of top for mild steel and block the active locality. The inhibitive impacts of 2-((thiophen-2-ylmethylene)amino)benzenethiol increase with increasing concentration and decrease with increasing temperature. SEM to checking revealed that the alloy surface was quite unaffected and formed protective film on its surface. The investigated
... Show MoreThe electrochemical behavior of Al-17%Si alloy is investigated in 3.5wt% NaCl solution. Many alloys with addition of the different wt% magnesium metal of 1wt%, 2%, 3wt% ,4.5wt% ,and 9wt% were prepared by gravity die casting . The microstructures of prepared alloys were examined by optical and SEM microscopes. Corrosion behavior was investigated by using potentiostat instrument under static potentials test and corrosion current was recorded to determine corrosion resistance of all prepared samples. It was found that the addition of Mg metal improves the corrosion resistance of Al-17%Si alloy in 3.5%NaCl solution. The alloy containing 1%Mg shows less corrosion rate than the others while the alloys containing 4.5%Mg, 9%Mg content have
... Show MoreAn effort is made to study the effect of composite nanocoating using aluminum-9%wt silicon alloys reinforced with different percentage (0.5,1,2,4)wt.% of carbon nanotubes (CNTs) using plasma spraying. The effect of this composite on corrosion behavior for AA6061-T6 by extrapolation Tafel test in sea water 3.5wt% NaCl was invested. Many specimens where prepared from AA6061-T6 by the dimension (15x15x3)mm as this first set up and other steps include coating process, X-ray diffraction and SEM examination .The results show the CNTs increase the corrosion rate of the nanocomposite coatings with increasing the weight percentage of CNTs within the Al-Si matrix. Al-9wt%Si coating layer itself has less corrosion rate if compared with both n
... Show More