The effect of time (or corrosion products formation) on corrosion rates of carbon steel pipe in aerated 0.1N NaCl
solution under turbulent flow conditions is investigated. Tests are conducted using electrochemical polarization
technique by determining the limiting current density of oxygen reduction in Reynolds number range of 15000 to 110000
and temperature range of 30 to 60oC. The effect of corrosion products formation on the friction factor is studied and
discussed. Corrosion process is analyzed as a mass transfer operation and the mass transfer theory is employed to
express the corrosion rate. The results are compared with many proposed models particularly those based on the
concept of analogy among momentum, heat, and mass transport. The capability of these models to predict corrosion
rates in presence of corrosion products is examined and discussed. It is found that formation of corrosion products with
time decreases the corrosion rate (or mass transfer rate) at low Reynolds number and temperature while it increases the
corrosion rate at high Re and temperature. It increases momentum transport and this increase depends on temperature,
Reynolds number, and corrosion rate. Increasing roughness due to the formation of corrosion products causes
overestimation of analogy correlations results by increasing friction factor and decreasing corrosion rate.
Vol. 6, Issue 1 (2025)
In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
Merging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering
... Show MoreThe investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show MoreRNA Sequencing (RNA-Seq) is the sequencing and analysis of transcriptomes. The main purpose of RNA-Seq analysis is to find out the presence and quantity of RNA in an experimental sample under a specific condition. Essentially, RNA raw sequence data was massive. It can be as big as hundreds of Gigabytes (GB). This massive data always makes the processing time become longer and take several days. A multicore processor can speed up a program by separating the tasks and running the tasks’ errands concurrently. Hence, a multicore processor will be a suitable choice to overcome this problem. Therefore, this study aims to use an Intel multicore processor to improve the RNA-Seq speed and analyze RNA-Seq analysis's performance with a multiproce
... Show MoreFor businesses that provide delivery services, the efficiency of the delivery process in terms of punctuality is very important. In addition to increasing customer trust, efficient route management, and selection are required to reduce vehicle fuel costs and expedite delivery. Some small and medium businesses still use conventional methods to manage delivery routes. Decisions to manage delivery schedules and routes do not use any specific methods to expedite the delivery settlement process. This process is inefficient, takes a long time, increases costs and is prone to errors. Therefore, the Dijkstra algorithm has been used to improve the delivery management process. A delivery management system was developed to help managers and drivers
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show More