The corrosion of carbon steel in single phase (water with 0.1N NaCl ) and two immiscible phases (kerosene-water) using turbulently agitated system is investigated. The experiments are carried out for Reynolds number (Re) range of 38000 to 95000 corresponding to rotational velocities from 600 to 1400 rpm using circular disk turbine agitator at 40 0C. In two-phase system test runs are carried out in aqueous phase (water) concentrations of 1 % vol., 5 % vol., 8% vol., and 16% vol. mixed with kerosene at various Re. The effect of Reynolds number (Re), percent of dispersed phase, dispersed drops diameter, and number of drops per unit volume on the corrosion rate is investigated and discussed. Test runs are carried out using two types of inhibitors: sodium nitrite of concentrations 20, 40, and 60 ppm and sodium hexapolyphosphate of concentrations 485, 970, and 1940 ppm in a solution containing 8 % vol. aqueous phase (water) mixed with kerosene (continuous phase) at 40 °C for the whole range of Re. It was found that increasing Re increases the corrosion rate and the presence of water enhances the corrosion rate by increasing the solution electrical conductivity. For two phase solution containing 8% vol. and 16% vol. of water the corrosion rate was higher than single phase (100 % vol. water). The main parameters that play the major role in determining the corrosion rate in two phase were concentration of oxygen, solution electrical conductivity, and the interfacial area between the two phases (dispersed and continuous). Sodium nitrite and sodium hexapolyphosphate were found to be efficient inhibitors in two phase solutionfor the investigated range of Re.
Polymers have the ability to extract water after they have been added to the mortar or concrete mixture. They provide the absorbed water during hydration functioning as internal water source. Absorption polymers can absorb up to hundred times of their own weight of pure water.This research deals with the use of water absorption polymer balls in concrete and study the volumetric change of these mixes and compared the results with reference mix (without polymers). Samples were cured both in air and in water for the mixes to compare results which show that samples in air behave for expansion while sample in water acted for shrinkage.
The steel jetty selected for strengthening is in Baghdad city, over Tigris River, consists of 55 short spans, each of approximately 4 meters and one naviga-tional opening of 12 m. The bridge is 224 meters length and 8 meters in width. The strengthening system was designed to remove overstresses that occurred when the bridge was subjected to abnormal loads of 380 tons. A strengthening system which installed in spring 2008 was used where the main concept is to depend on added side supporting elements which impose reversal forces on the bridge to counteract most of the loads expected from the abnormal heavy loads. The bridge was load tested before and after the strengthening system was activated. The load test results indicate that the strengt
... Show MoreElectrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on
... Show MoreIn engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb mode
... Show MoreThe present study focused mainly on the vibration analysis of composite laminated plates subjected to
thermal and mechanical loads or without any load (free vibration). Natural frequency and dynamic
response are analyzed by analytical, numerical and experimental analysis (by using impact hammer) for
different cases. The experimental investigation is to manufacture the laminates and to find mechanical
and thermal properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus,
longitudinal and transverse thermal expansion and thermal conductivity. The vibration test carried to
find the three natural frequencies of plate. The design parameters of the laminates such as aspect ratio,
thickness
The construction of embankment for roadway interchange system at urban area is restricted due to the large geometry requirements, since the value of land required for such construction is high, and the area available is limited as compared to rural area. One of the optimum solutions to such problem is the earth reinforcement technique which requires a limited area for embankment construction. Gypseous soil from Al-Anbar governorate area was obtained and subjected to various physical and chemical analysis to determine it is properties. A laboratory model box of 50x50x25 cm was used as a representative embankment; soil has been compacted in five layers at maximum dry density (modified compaction) and an aluminum reinforcement strips we
... Show MoreIn this work, the behavior of reinforced concrete columns under biaxial bending is studied. This work aims at studying the strengthening of columns by using carbon fiber reinforced polymer (CFRP). The experimental work includes investigation of eight reinforced concrete columns (150*150*500mm) tested under several load conditions. Variables considered in the test program include; effect of eccentricity and effect of longitudinal reinforcement (Ø12mm or Ø6mm). Test results are discussed based on load – lateral deflection behavior, load –longitudinal deflection behavior, ultimate load and failure modes. The CFRP reinforcement permits
a complete change in the failure mode of the columns .The effect of longitudinal reinforcement in
Israel is one of the countries most interested in Iran's nuclear program file, and the progress of negotiations between Iran and the six countries and will end it, as well as the nature of the relationship between Iran and the United States of America. Is determined by the Israeli vision of the nature of Iran's nuclear program Iran's policy toward Israel orientations, which does not recognize the existence of Israel. Israel, therefore, one of the countries pushing to prevent Iran from acquiring nuclear technology. However, those Israeli efforts did not succeed in achieving its objectives, the United States of America and European countries is well aware of the risk of stenosis on Iran, as well as the risks and the consequences of militar
... Show More