The corrosion of carbon steel in single phase (water with 0.1N NaCl ) and two immiscible phases (kerosene-water) using turbulently agitated system is investigated. The experiments are carried out for Reynolds number (Re) range of 38000 to 95000 corresponding to rotational velocities from 600 to 1400 rpm using circular disk turbine agitator at 40 0C. In two-phase system test runs are carried out in aqueous phase (water) concentrations of 1 % vol., 5 % vol., 8% vol., and 16% vol. mixed with kerosene at various Re. The effect of Reynolds number (Re), percent of dispersed phase, dispersed drops diameter, and number of drops per unit volume on the corrosion rate is investigated and discussed. Test runs are carried out using two types of inhibitors: sodium nitrite of concentrations 20, 40, and 60 ppm and sodium hexapolyphosphate of concentrations 485, 970, and 1940 ppm in a solution containing 8 % vol. aqueous phase (water) mixed with kerosene (continuous phase) at 40 °C for the whole range of Re. It was found that increasing Re increases the corrosion rate and the presence of water enhances the corrosion rate by increasing the solution electrical conductivity. For two phase solution containing 8% vol. and 16% vol. of water the corrosion rate was higher than single phase (100 % vol. water). The main parameters that play the major role in determining the corrosion rate in two phase were concentration of oxygen, solution electrical conductivity, and the interfacial area between the two phases (dispersed and continuous). Sodium nitrite and sodium hexapolyphosphate were found to be efficient inhibitors in two phase solutionfor the investigated range of Re.
To maintain river flows necessary to meet social and ecological objectives, instream environmental flows are frequently used as a strategy. The capability of three alternative historical flow approaches to protect against low flows is shown in this study using gage stations in the Shatt Al-Hillah River in Iraq. The extension of the Shatt al-Hillah River is the focus of this research discussion on environmental flow assessment. The available data on discharge in this research were adopted for ten years from 2012-2021. Different flow methods were adopted to establish a minimum environmental flow in the Shatt Al-Hillah River. Three hydrological-based approaches: Tennant, modified Tennant, and low-flow metrics like 7Q10, wer
... Show MoreIn this research study Hardness (shore D), Water absorption,
Flexural, Impact Test, and Fracture Toughness of polymer nano
composites. The polymer nano composites based on unsaturated
polyester resin reinforced with Kevlar fibers (K.F). The samples are
attended by hand lay – up method according to (Rule mixture) for
various volume fractions of unsaturated polyester resin, fiber and
carbon nanotube. The polyester resin was matrix strengthened with
3% volume fraction from Kevlar fiber and (0.5%, 1%, 1.5%, 2%)
volume fractions of carbon nanotube. The water absorption, hardness
(shore D), flexural test, impact test and toughness fracture properties
were studied. Results showed that the water absorption increas
Carbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressu
... Show MoreClimate and hydrological conditions in any hydrological basin are multi-combined reflection of natural factors of morphology and soil nature, as well as the changing in climate factors that affect directly on hydrological cycle. Water balance techniques are a means of solution of important theoretical and practical hydrological problems, while estimating the physical properties of water-bearing layers is an essential part of groundwater studies. One of the most effective ways of determining these properties is to conduct and analyze aquifer tests. The aim of this research is to compare groundwater recharge in Khan Al-Baghdadi area which located to northwest of Anbar governorate in the west of Iraq, depending on meteorological water balan
... Show MoreAn optimization study was conducted to determine the optimal operating pressure for the oil and gas separation vessels in the West Qurna 1 oil field. The ASPEN HYSYS software was employed as an effective tool to analyze the optimal pressure for the second and third-stage separators while maintaining a constant operating pressure for the first stage. The analysis involved 10 cases for each separation stage, revealing that the operating pressure of 3.0 Kg/cm2 and 0.7 Kg/cm2 for the second and third stages, respectively, yielded the optimum oil recovery to the flow tank. These pressure set points were selected based on serval factors including API gravity, oil formation volume factor, and gas-oil ratio from the flow tank. To impro
... Show MoreBackground: The most crucial mechanism of genetic variation in N. meningitidis is the slipped strand mispairing, this mechanism generates Phase variation using simple sequence repeat (SSR) and is commonly used by the N. meningitidis to escape the immune system despite its function in eradicating the pathogenic and commensal bacteria. Some of simple sequence repeats (SSRs) that located within the genome works as phase variation while other SSRs have no role in generating phase variation mechanisms. Therefore, Aim: the main goal of the current in silico study was to detect the probability of SSR to enroll with phase variation for the entire N. meningitidis genome. Methods: Different criteria were used to judge SSR as
... Show MoreA lotic ecosystem is considered a source of carbon dioxide (CO2) in the atmosphere where it becomes supersaturated with CO2, which contributes to the global carbon cycle. To enhance our comprehension of the roles of CO2 in rivers, an outdoor experiment was designed with controlled carbon source inputs to investigate the roles of the dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the phytoplankton community. Plastic enclosures were installed in the Tigris River within Baghdad for that goal. Samples were collected on the first day, as well as on the 5th and the 12th days from 14 enclosures. The enclosures were treated by artificial glucose (C6H12O6) (10, 20, 30mg/ l) as DOC sources, while sodium bicarbonate (NaHCO3) (1
... Show MoreThe current standard for treating pilonidal sinus (PNS) is surgical intervention with excision of the sinus. Recurrence of PNS can be controlled with good hygiene and regular shaving of the natal cleft, laser treatment is a useful adjunct to prevent recurrence. Carbon dioxide (CO2) laser is a gold standard of soft tissue surgical laser due to its wavelength (10600 nm) thin depth (0.03mm) and collateral thermal zone (150mic).It effectively seals blood vessels, lymphatic, and nerve endings, Moreover wound is rendered sterile by effect of laser. Aim of this study was to apply and assess the clinical usefulness of CO2 10600nm laser in pilonidal sinus excision and decrease chance of recurrence. Design: For 10 patients, between 18 and 39 year
... Show More