Preferred Language
Articles
/
ijcpe-475
Alpha-Alumina Extraction from Al-Ga'ara Bauxite
...Show More Authors

The bauxite produced from Al-Ga 'ara area in Al-Enbar containing 50.4 wt. percentages Al2O3 was used for a- alumina production.                                                                                                

For α-alumina production bauxite was mixed with calcium carbonate in a ratio 1:3 and the mixture was burned at temperature range 1l 50-l350°C, cooled to 500°C; crushed and ground. The powder produced treated then with 6% sodium carbonate solution using different temperature (60-100°C) for fifteen minutes. After filtration, the produced sodium alurninate solution was reacted with 2% of calcium hydroxide at 98°C for thirty minutes. The filtrate was carbonated with purified C02 gas at 70°C for different times (30-180 min) and different flow rates (20-80 cm3/min).

Alumina was precipitated as hydrate, then washed with water, dried at 110°C, and calcined at 1200°C. The produced α­ Al2O3 was identified   by X-ray diffraction.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Fri Nov 01 2019
Journal Name
2019 1st International Informatics And Software Engineering Conference (ubmyk)
Radial Basis Function (RBF) Based on Multistage Autoencoders for Intrusion Detection system (IDS)
...Show More Authors

In this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jul 18 2014
Journal Name
International Journal Of Computer Applications
3-Level Techniques Comparison based Image Recognition
...Show More Authors

Image recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third

... Show More
View Publication
Crossref
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Simulation Recording of an ECG, PCG, and PPG for Feature Extractions
...Show More Authors

Recently, the development of the field of biomedical engineering has led to a renewed interest in detection of several events. In this paper a new approach used to detect specific parameter and relations between three biomedical signals that used in clinical diagnosis. These include the phonocardiography (PCG), electrocardiography (ECG) and photoplethysmography (PPG) or sometimes it called the carotid pulse related to the position of electrode.

Comparisons between three cases (two normal cases and one abnormal case) are used to indicate the delay that may occurred due to the deficiency of the cardiac muscle or valve in an abnormal case.

The results shown that S1 and S2, first and second sound of the

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 02 2014
Journal Name
Journal Of Theoretical And Applied Information Technology
TUMOR BRAIN DETECTION THROUGH MR IMAGES: A REVIEW OF LITERATURE
...Show More Authors

Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin

... Show More
Scopus (47)
Scopus
Publication Date
Tue Jan 09 2018
Journal Name
World Rural Observations
Solid cartridges in Determination of Benzidines in River and Wastewater by HPLC
...Show More Authors

A solid Phase Extraction (SPE) cartridges followed by HPLC-UV method is described for the simultaneous quantitative determination of benzidine (BZ) and its substituted 3, 3’-dichlorobenzidine (DCB) and 3, 3’-Dimethylbenzidine (DMB). The Benzidines were separated by liquid chromatography using a C-18 column with UV detector at wave length of 280nm. The mode of Flow was isocratic. The mobile phase was consisted of 75:25 methanol: water, column temperature 50C°, and Flow Rate 1.8ml/min. Calibration curves were linear (R2 = 0.9979-0.9995). LOD (26.36-33.67) µg/L, LOQ (109.98-186.11) µg/L, the Robustness (2.99-4.35), Ruggedness (2.93-3.65).Conditions of extraction by (SPE) cartridges were optimized, the resin used is Octadecyl silica (ODS

... Show More
Publication Date
Sat Mar 08 2025
Journal Name
Fusion: Practice And Applications
Fast Numeric Sign Detection Using Adaptive Thresholding and Geometry of Optimized Fingers
...Show More Authors

A strong sign language recognition system can break down the barriers that separate hearing and speaking members of society from speechless members. A novel fast recognition system with low computational cost for digital American Sign Language (ASL) is introduced in this research. Different image processing techniques are used to optimize and extract the shape of the hand fingers in each sign. The feature extraction stage includes a determination of the optimal threshold based on statistical bases and then recognizing the gap area in the zero sign and calculating the heights of each finger in the other digits. The classification stage depends on the gap area in the zero signs and the number of opened fingers in the other signs as well as

... Show More
Scopus
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis Using Spectral and Statistical Analysis of Cough Recordings Based on the Combination of SVD and DWT
...Show More Authors

Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of The College Of Education For Women
Audio Classification Based on Content Features
...Show More Authors

Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to

... Show More
View Publication Preview PDF