The aim of this work is to develop an axi-symmetric two dimensional model based on a coupled simplified computational fluid dynamics (CFD) and Lagrangian method to predict the air flow patterns and drying of particles. Then using this predictive tool to design more efficient spray dryers. The approach to this is to model what particles experience in the drying chamber with respect to air temperature and humidity. These histories can be obtained by combining the particles trajectories with the air temperature/humidity pattern in the spray dryer. Results are presented and discussed in terms of the air velocity, temperature, and humidity profiles within the chambers and compared for drying of a 42.5% solids solution in a spray chamber 2.22m in diameter with a cylindrical top section 2.00m high and a bottom cone section 1.725m high.
B3LYP/6-31G, DFT method was applied to hypothetical study the design of six carbon nanotube materials based on [8]circulene, through the use of cyclic polymerization of two and three molecules of [8]circulene. Optimized structures of [8]circulene have saddle-shaped. Design of six carbon nanotubes reactions were done by thermodynamically calculating (Δ S, Δ G and Δ H) and the stability of these hypothetical nanotubes depending on the value of HOMO energy level. Nanotubes obtained have the most efficient gap energy, making them potentially useful for solar cell applications.
The characterization and design of this study of new liquid crystals with a V shape compounds containing thiazolidine-2,4-dione and 1,3-phenylene as a core unite with mesophase properties were reported. Preparation and characterization of chloroacetic acid, water, and thiourea to produce thiazolidine-2,4-dione [I] in the presence of strong hydrochloric acid. The 4-hydreoxybenzaldehyde and n-alkyl bromide were reacted with potassium hydroxide to create the n-alkoxy benzaldehyde., then the compound [I] reacted with [II]n in presence of piperidine to produce compounds [III]n. Also, converted resorcinol to a corresponding compound [IV] by refl
... Show MoreThe Internet of Things (IoT) technology is every object around us and it is used to connect these objects to the Internet to verify Machine to Machine (M2M) communication. The smart house system is the most important application of IoT technology; it is increase the quality of life and decrease the efforts. There were many problems that faced the existing smart house networking systems, including the high cost of implementation and upgrading, high power consumption, and supported limited features. Therefore, this paper presents the design and implementation of smart house network system (SHNS) using Raspberry Pi and Arduino platforms as network infrastructure with ZigBee technology as wireless communication. SHNS consists of two mai
... Show MoreThis paper proposes a compact, plasmonic-based 4 × 4 nonblocking switch for optical networks. This device uses six 2 × 2 plasmonic Mach-Zehnder switch (MZS), whose arm waveguide is supported by a JRD1 polymer layer as a high electro-optic coefficient material. The 4 × 4 switch is designed in COMSOL environment for 1550 nm wavelength operation. The performance of the proposed switch outperforms those of conventional (nonplasmonic) counterparts. The designed switch yields a compact structure ( 500 × 70 µ m 2 ) having V π L = 12 V · µ m , 1.5 THz optical bandwidth, 7.7 dB insertion loss, and −26.5 dB crosstalk. The capability of the switch to route 8 × 40 Gbps WDM signal is demonstrated successfully.
... Show MoreDigital forensics has become a fundamental requirement for law enforcement due to the growing volume of cyber and computer-assisted crime. Whilst existing commercial tools have traditionally focused upon string-based analyses (e.g., regular expressions, keywords), less effort has been placed towards the development of multimedia-based analyses. Within the research community, more focus has been attributed to the analysis of multimedia content; they tend to focus upon highly specialised specific scenarios such as tattoo identification, number plate recognition, suspect face recognition and manual annotation of images. Given the ever-increasing volume of multimedia content, it is essential that a holistic Multimedia-Forensic Analysis Tool (M-
... Show MoreApplications of nonlinear, time variant, and variable parameters represent a big challenge in a conventional control systems, the control strategy of the fuzzy systems may be represents a simple, a robust and an intelligent solution for such applications.
This paper presents a design of fuzzy control system that consists of three sub controllers; a fuzzy temperature controller (FC_T), a fuzzy humidity controller (FC_H) and a ventilation control system; to control the complicate environment of the greenhouse (GH) using a proposed multi-choice control system approach. However, to reduce the cost of the crop production in the GH, the first choice is using the ventilation system to control the temperature and humidit
... Show MoreThis study delves into the design optimization of a hydropower harvesting system, exploring various parameters and their influence on system performance. By modifying the variables within the model to suit different flow conditions, a judiciously optimized design is attainable. Notably, the lift force generated is found to be intricately linked to the strategic interplay of the bluff body's location, cylinder dimensions, and flow velocity. The findings culminate in the establishment of empirical equations, one for lift force and another for displacement, based on the force equation. Many energy harvesting approaches hinge on the reciprocating motion inherent to the structural system. The methodology developed in this study emerges as a pot
... Show More