Preferred Language
Articles
/
ijcpe-462
Drop Interface Coalescence in Liquid-Liquid System
...Show More Authors

This investigation is a study of the length of time where drops can exist at an oil-water interface before coalescence take place with a bulk of the same phase as the drops. Many factors affecting the time of coalescence were studied in is investigation which included: dispersed phase flow rate, continuous phase height, hole size in distributor, density difference between phases, and viscosity ratio of oil/water systems, employing three liquid/liquid systems; kerosene/water, gasoil/water, and hexane/water. Higher value of coalescence time was 8.26 s at 0.7ml/ s flow rate, 30cm height and 7mm diameter of hole for gas oil/water system, and lower value was 0.5s at 0.3ml/s flow rate, 10 cm height and 3mm diameter of hole for  hexane/water system. It is observed that time of coalescence increased with increase in the dispersed phase flow rate, continuous phase height, hole size in distributor, and viscosity ratio of oil/water system. The results have been analyzed by dimensional  and statistical analysis,  and a correlation was developed relating coalescence time with the operating/actors and the physical properties of the three oil/water systems.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Iaes International Journal Of Artificial Intelligence
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Mon Dec 10 2018
Journal Name
Aro-the Scientific Journal Of Koya University
Membrane Computing for Real Medical Image Segmentation
...Show More Authors

In this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Engineering
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Power Generation from Utilizing Thermal Energy of Hazardous Waste Incinerators
...Show More Authors

A large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system gen

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 21 2023
Journal Name
Journal Of Electrochemical Science And Engineering
Phenol removal by electro-Fenton process using a 3D electrode with iron foam as particles and carbon fibre modified with graphene
...Show More Authors

The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Journal Of Engineering
Designing a Secure Software-Defined Radio Transceiver using the Logistic Map
...Show More Authors

The need to exchange large amounts of real-time data is constantly increasing in wireless communication. While traditional radio transceivers are not cost-effective and their components should be integrated, software-defined radio (SDR) ones have opened up a new class of wireless technologies with high security.  This study aims to design an  SDR  transceiver was built using one type of modulation, which is 16 QAM, and adding a  security subsystem using one type of chaos map, which is a  logistic map, because it is a very simple nonlinear dynamical equations that generate a random key and  EXCLUSIVE  OR with the originally transmitted data to protect data through the transmission. At th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Iecon 2017 - 43rd Annual Conference Of The Ieee Industrial Electronics Society
Optimal second order integral sliding mode control for a flexible joint robot manipulator
...Show More Authors

The flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S

... Show More
View Publication
Scopus (13)
Crossref (8)
Scopus Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Al-dhad - Book Store And Publishing
Multivariate Analysis (First Edition)
...Show More Authors

This Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro

... Show More
Publication Date
Sun Sep 01 2019
Journal Name
Al-dhad Book Store
Multivariate Analysis - First Edition
...Show More Authors

This Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro

... Show More
Preview PDF
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
...Show More Authors

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
View Publication Preview PDF
Crossref (1)
Crossref