Preferred Language
Articles
/
ijcpe-447
Viscosity Index Improvement of Lubricating Oil Fraction (SAE – 30)
...Show More Authors

An investigation was conducted for the improvement of viscosity index of a lubricating oil fraction (SAE – 30) obtained from vacuum distillation unit of lube oil plant of Daura Refinery, using solvent extraction process. In this study two type of extraction solvents were used to extract the undesirable materials which reduce the viscosity index of raw lubricating oil fraction, the first solvent was furfural which is un use today in the Iraqi refineries and the second was NMP (N-methyl, 2, pyrrolidone) which is used for the first time in this work to extract the lubricating oil fraction produced from Iraqi crude oils. The studied effecting variables of extraction are extraction temperature range from 70 to 110 oC for furfural and NMP extraction, solvent to oil ratio range from 1:1 to 5:1 (wt/wt) for furfural extraction and from 0.5:1 to 2:1 (wt/wt) for NMP extraction. The results of this investigation show that the viscosity index of lubricating oil fraction increases with increasing extraction temperature and increasing the solvent to oil ratio and reaches 83 for NMP extraction at extraction temperature 110 oC and solvent to oil ratio 2:1, while the viscosity index reaches to 80 for furfural extraction at the same extraction temperature and solvent oil ratio. Higher viscosity index of lubricating oil fraction is obtained by using NMP instead of furfural under the same operating variables (extraction temperature and solvent to oil ratio). Further more, the results show that the viscosity, refractive index, and percentage yield of raffinate decreased as the extraction temperature or solvent to oil ratio increases for furfural and NMP extraction.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 18 2022
Journal Name
Materials Science Forum
The Effect of Gamma Radiation on the Manufactured HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>2.4</sub>Ag<sub>0.6</sub>O<sub>8+δ</sub> Compound
...Show More Authors

In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref