The determination of river pollution impact on the performance of water treatment plants is achieved by two main objectives. The first is to study raw and treated water qualities and comparing them with standards and the second is to evaluate the treatment plants efficiency. The analyzed data were those water quality parameters in relation to physical, chemical and bacteriological characteristics for river water and produced water by seven water treatment plants located on Tigris River passing through Baghdad City.
The results of this study indicated that all raw water characteristic are within the surface water standards established by Iraqi and USA criteria except Bacterial Counts.
Tigris River water is of good quality to be treated at the intake of KWTP and tends to be of less quality as it flows to south of city, where it is highly polluted at intake of RWTP.
The analysis of treated water quality parameters supplied by all water treatment plants indicated that most of these characteristics are within the Iraqi criteria and WHO guide lines except for the produced in RWTP.
RWTP exceeded the water quality standards which recommended by WHO particularly Bacterial Counts and Turbidity.
The analysis showed that all water treatment plants have little effect on the in removal of the most of inorganic chemicals pollutants, the increasing Level of Sulfate, Hardness, and Total Dissolved Solid in treated water could be related to the absence of any chemical treatment units in the conventional Baghdad water treatment works, and to the increasing of the concentration of these variables in river water.
The statistical analysis had indicated that the correlation coefficient between Turbidity and Total Coliform Bacteria in river water for KWTP, EWTP and KRWTP were good, and begin to increase at other water treatment plants reaching RWTP because the water quality of the river is deteriorated as the river flow downstream in Baghdad city.
Water absorbent polymers (WAP) are new component in producing building materials. They provide internal curing which reduces autogenous cracking, eliminates autogenous shrinkage, mortar strength increased, enhance early age strength to withstand strain, improve the durability, introduce higher early age compressive strength, have higher performance and reduce the effect of insufficient external curing. This research used different percent of polymer balls to choose the percent that provides good development in compressive strength with time for both water and air curing. The water absorption polymer balls in this research have the ability to absorb water and after usage in concrete they spill out the water (internal curing) and shri
... Show MoreSalinity of soil or irrigation water is one of the most important obstacle towards crop production and productivity, especially with the increasing scarcity of fresh water in Iraq and the Arab countries. The impact of salinity will be alleviated with the increasing temperature due to global warming. The objectives of this article was to shed some light on traits more related to salinity stress tolerance in oats, and to identify genetic variation of these traits. A split-plot arrangement experiment with RCBD was applied through 2011-2013 on the farm of Dept. of Field Crops/Coll. of Agric./Univ. of Baghdad. The oats cultivars; Hamel, Pimula and Genzania were set in sub-plots, whereas water quality was set in main-plots. Water quality had two
... Show MoreThe study examined the assessment of raw water and drinking water projects of Diyala Governorate for the year 2017, amounting to (24) projects, The average per capita supply of potable water (0.396 m3 / day/person), which is less than the global standard for the average per capita of drinking water, and constitute water rumors within the network of water transport in the province (3%), and the water of raw and drinking value within the limits allowed to be used by Iraq and the global indicators of {Total acidity, alkaline, acidic function, chlorides, magnesium, Electrical conductivity, total soluble salts, sodium, potassium, sulfates, turbidity other than (raw water)}. While the index of calcium only a value higher than the limits
... Show MoreConstruction and operation of (2 m) parabolic solar dish for hot water application were illustrated. The heater was designed to supply hot water up to 100 oC using the clean solar thermal energy. The system includes the design and construction of solar tracking unit in order to increase system performance. Experimental test results, which obtained from clear and sunny day, refer to highly energy-conversion efficiency and promising a well-performed water heating system.
Well-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
This work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.
Water saturation is the most significant characteristic for reservoir characterization in order to assess oil reserves; this paper reviewed the concepts and applications of both classic and new approaches to determine water saturation. so, this work guides the reader to realize and distinguish between various strategies to obtain an appropriate water saturation value from electrical logging in both resistivity and dielectric has been studied, and the most well-known models in clean and shaly formation have been demonstrated. The Nuclear Magnetic Resonance in conventional and nonconventional reservoirs has been reviewed and understood as the major feature of this approach to estimate Water Saturation based on T2 distribution. Artific
... Show MoreBiodiesel production from microalgae depends on the biomass and lipid production. Both biomass and lipid accumulation is controlled by several factors. The effect of various culture media (BG11, BBM, and Urea), nutrients stress [nitrogen (N), phosphorous (P), magnesium (Mg) and carbonate (CO3)] and gamma (γ) radiation on the growth and lipid accumulation of Dictyochloropsis splendida were investigated. The highest biomass and lipid yield of D. splendida were achieved on BG11 medium. Cultivation of D. splendida in a medium containing 3000 mg L−1 N, or 160 mg L−1 P, or 113 mg L−1 Mg, or 20 mg L-1 CO3, led to enhanced growth rate. While u
... Show More