This work was conducted to study the treatment of industrial waste water, and more particularly those in the General Company of Electrical Industries.This waste water, has zinc ion with maximum concentration in solution of 90 ppm.
The reuse of such effluent can be made possible via appropriate treatments, such as chemical coagulation, Na2S is used as coagulant.
The parameters that influenced the waste water treatment are: temperature, pH, dose of coagulant and settling time.
It was found that the best condition for zinc removal, within the range of operation used ,were a temperature of 20C a pH value of 13 , a coagulant dose of 15 g Na2S /400ml solution and a settling time of 7 days. Under these conditions the zinc concentration was reduced from 90mg/l to 0.003 mg/l.
Nanofluid treatment of oil reservoirs is being developed to enhance oil recovery and increase residual trapping capacities of CO2 at the reservoir scale. Recent studies have demonstrated good potential for silica nanoparticles for enhanced oil recovery (EOR) at ambient conditions. Nanofluid composition and exposure time have shown significant effects on the efficiency of EOR. However, there is a serious lack of information regarding the influence of temperature on nanofluid performance; thus the effects of temperature, exposure time and particle size on wettability alteration of oil-wet calcite surface were comprehensively investigated; moreover, the stability of the nanofluids was examined. We found that nanofluid treatment is more efficie
... Show MoreThe effect of some environmental factors in the loss rate for high weights virgins are full to the screwworm fly of the ancient world and included temperatures 15,20,25,30,35,40 study showed that the rate of loss in weight virgins advanced to full participants at a temperature of 15 C while notgets evolution
Electrochemical oxidation in the presence of sodium chloride used for removal of phenol and any other organic by products formed during the electrolysis by using MnO2/graphite electrode. The performance of the electrode was evaluated in terms fraction of phenol and the formed organic by products removed during the electrolysis process. The results showed that the electrochemical oxidation process was very effective in the removal of phenol and the other organics, where the removal percentage of phenol was 97.33%, and the final value of TOC was 6.985 ppm after 4 hours and by using a speed of rotation of the MnO2 electrode equal to 200 rpm.
Oyster mushroom (Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm.) is involved in the destruction of dead wood which is the main place of settlement of several living organisms. After humification, dead wood also becomes an important component of forest soils.
The purpose of the research is to study temperature and moisture conditions of extensive cultivation of oyster mushrooms on various wood substrates. To accomplish this goal, the following tasks were set: to determine the amount of effective stress temperatures and moisture content of substrates and their influence on the appearance of fruiting bodies of the oyster mushroom; to study the features of the extensive culti
... Show MoreThis work was conducted to study the recovery of catalyst and desirable components from tar formed in phenol production unit and more particularly relates to such a method whereby better recovery of copper salts, phenol, benzoic acid and benzoate salts from tar by aqueous acid solution was accomplished.
The effect of solvent type, solvent concentration (5, 10, 15, 20, 25 and 30 wt%), agitation speed (100, 200, 300 and 400 rpm), agitation time (5, 10, 15, 20 and 25 min), temperature (90, 100, 110, 120, 130 and 140 oC) , phase ratio (1/1, 2/1, 3/1, 4/1 and 5/1) and number of extraction (1, 2, 3, 4, and 5) were examined in order to increase the catalyst and desirable components extraction.
Four types of solvent were used; hydrochloric

