An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter (hw/dH), ratio of pressure of process to atmosphere pressure (P/Pa), Weber number (lTe).
Statistical analysis showed that the proposed models have an average absolute relative error (AARE) of 9.3% and
standard deviation (SD) of 9.7%for first model, AARE of 9.35% and SD of 10.5%for second model and AARE of 9.8%
and SD of 7.5% for the third model.
The study aims to find out the effectiveness of using the Google classroom educational platform in teaching mathematics curricula from the viewpoint of teachers in the Governorate of Al Dhahirah, Sultanate of Oman. The researcher adopted the descriptive-analytical approach. To collect the needed data, a questionnaire of two dimensions was used. It includes (13) items to measure the effectiveness of using the Google classroom in teaching mathematics curricula from the teacher's point of view and includes (10) items to measure the difficulties of using the Google classroom in teaching mathematics curricula from the teachers' point of view. These tools were applied to (32) male and (31) female as the study sample. They represent mathematics
... Show MoreThe utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional quality.
... Show MoreThis paper presents an IoT smart building platform with fog and cloud computing capable of performing near real-time predictive analytics in fog nodes. The researchers explained thoroughly the internet of things in smart buildings, the big data analytics, and the fog and cloud computing technologies. They then presented the smart platform, its requirements, and its components. The datasets on which the analytics will be run will be displayed. The linear regression and the support vector regression data mining techniques are presented. Those two machine learning models are implemented with the appropriate techniques, starting by cleaning and preparing the data visualization and uncovering hidden information about the behavior of
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreThe railways network is one of the huge infrastructure projects. Therefore, dealing with these projects such as analyzing and developing should be done using appropriate tools, i.e. GIS tools. Because, traditional methods will consume resources, time, money and the results maybe not accurate. In this research, the train stations in all of Iraq’s provinces were studied and analyzed using network analysis, which is one of the most powerful techniques within GIS. A free trial copy of ArcGIS®10.2 software was used in this research in order to achieve the aim of this study. The analysis of current train stations has been done depending on the road network, because people used roads to reach those train stations. The data layers for this st
... Show MoreThe study aims to identify the reality of the use of educational technology in the teaching of mathematics from the point of view of mathematics teachers in Amman, where the researcher used the descriptive survey method. The sample included (67) female teachers working in public schools in Amman. In order to achieve the objectives of the study, the researcher used the questionnaire as a tool to collect data. The study concluded that many educational techniques are not available from the point of view of the study sample. Mathematics teachers also found that there are many obstacles that prevent the use of educational techniques in schools, most notably the lack of courses offered to teachers on the use of teaching techniques in teaching
... Show MoreAmong many problems that reduced the performance of the network, especially Wide Area Network, congestion is one of these, which is caused when traffic request reaches or exceeds the available capacity of a route, resulting in blocking and less throughput per unit time. Congestion management attributes try to manage such cases. The work presented in this paper deals with an important issue that is the Quality of Service (QoS) techniques. QoS is the combination effect on service level, which locates the user's degree of contentment of the service. In this paper, packet schedulers (FIFO, WFQ, CQ and PQ) were implemented and evaluated under different applications with different priorities. The results show that WFQ scheduler gives acceptable r
... Show MoreIn this study, genetic algorithm was used to predict the reaction kinetics of Iraqi heavy naphtha catalytic reforming process located in Al-Doura refinery in Baghdad. One-dimensional steady state model was derived to describe commercial catalytic reforming unit consisting of four catalytic reforming reactors in series process.
The experimental information (Reformate composition and output temperature) for each four reactors collected at different operating conditions was used to predict the parameters of the proposed kinetic model. The kinetic model involving 24 components, 1 to 11 carbon atoms for paraffins and 6 to 11 carbon atom for naphthenes and aromatics with 71 reactions. The pre-exponential Arrhenius constants and a
... Show MoreIntegrating Renewable Energy (RE) into Distribution Power Networks (DPNs) is a choice for efficient and sustainable electricity. Controlling the power factor of these sources is one of the techniques employed to manage the power loss of the grid. Capacitor banks have been employed to control phantom power, improving voltage and reducing power losses for several decades. The voltage sag and the significant power losses in the Iraqi DPN make it good evidence to be a case study proving the efficiency enhancement by adjusting the RE power factor. Therefore, this paper studies a part of the Iraqi network in a windy and sunny region, the Badra-Zurbatya-11 kV feeder, in the Wasit governorate. A substation of hybrid RE sources is connected to this
... Show MoreAutomated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show More