An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter (hw/dH), ratio of pressure of process to atmosphere pressure (P/Pa), Weber number (lTe).
Statistical analysis showed that the proposed models have an average absolute relative error (AARE) of 9.3% and
standard deviation (SD) of 9.7%for first model, AARE of 9.35% and SD of 10.5%for second model and AARE of 9.8%
and SD of 7.5% for the third model.
A study to find the optimum separators pressures of separation stations has been performed. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid is discharged from a higher-pressure separator into the lower-pressure separator. The set of working separator pressures that yields maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures, which is the target of this work.
A computer model is used to find the optimum separator pressures. The model employs the Peng-Robinson equation of state (Peng and Robinson 1976) for volatile oil. The application of t
Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreStrong and ∆-convergence for a two-step iteration process utilizing asymptotically nonexpansive and total asymptotically nonexpansive noneslf mappings in the CAT(0) spaces have been studied. As well, several strong convergence theorems under semi-compact and condition (M) have been proved. Our results improve and extend numerous familiar results from the existing literature.
This research investigates solid waste management in Al-Kut City. It included the collection of medical and general solid waste generated in five hospitals different in their specialization and capacity through one week, starting from 03/02/2012. Samples were collected and analyzed periodically to find their generation rate, composition, and physical properties. Analysis results indicated that generation rate ranged between (1102 – 212) kg / bed / day, moisture content and density were (19.0 % - 197 kg/ m3) respectively for medical waste and (41%-255 kg/ m3) respectively for general waste. Theoretically, medical solid waste generated in Al-Kut City (like any other city), affected by capacity, number of patients in a day, and hosp
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreIn this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.