Preferred Language
Articles
/
ijcpe-422
Prediction of the Point Efficiency of Sieve Tray Using Artificial Neural Network
...Show More Authors

An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter (hw/dH), ratio of pressure of process to atmosphere pressure (P/Pa), Weber number (lTe).
Statistical analysis showed that the proposed models have an average absolute relative error (AARE) of 9.3% and
standard deviation (SD) of 9.7%for first model, AARE of 9.35% and SD of 10.5%for second model and AARE of 9.8%
and SD of 7.5% for the third model.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Diagnosis and Classification of Type II Diabetes based on Multilayer Neural Network
...Show More Authors

     Diabetes is considered by the World Health Organization (WHO) as a main health problem globally. In recent years, the incidence of Type II diabetes mellitus was increased significantly due to metabolic disorders caused by malfunction in insulin secretion. It might result in various diseases, such as kidney failure, stroke, heart attacks, nerve damage, and damage in eye retina. Therefore, early diagnosis and classification of Type II diabetes is significant to help physician assessments.

The proposed model is based on Multilayer Neural Network using a dataset of Iraqi diabetes patients obtained from the Specialized Center for Endocrine Glands and Diabetes Diseases. The investigation includes 282 samples, o

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 16 2008
Journal Name
Journal Of Planner And Development
Evaluation of the efficiency of the regional transport network of the district center of Mahmudiya
...Show More Authors

The Study aims at evaluating the efficiency of the regional transportation net in Al-mahmoodiya Qadaa center. The bus station of the Qadaa center is suffering from heavy traffic jam, which is due to the ongoing movement of the adjacent provinces, particularly the small cities. They vary in the degree of their link by the regional transportation net that links the province with the centers of big cities. That affects the traffic flow of the civilians of these cities and their daily activities in hierarchical way To achieve the purpose of the study, a questionnaire has been constructed to collect data through selecting a random sample including the passengers who are coming to the bus station in Al-Mahmoodiya center to know the flo

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 17 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Study of Positive and Negative Parity States in 114Te nucleus by the Interacting Boson Model .IBM by Neural Network(Back propagation multi-layer neural network) .
...Show More Authors

Positive and negative parity states for 114Te have been studied applying the vibration al limit U(5) of Interacting boson model (IBM- 1 ) . The present results have shown their good agreement with experimental data in addition to the determination of the spin/parity of new energy levels are not assigned experimentally as the levels 0+2 and 5+1 and the levels 3"1 and 5-1 . Then back propagation multiLayer neural network used for positive and negative parity states for 114Te and shown their membership to the Vibration limit U(5) the network implemented by MATLAB system.

View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Eastern-european Journal Of Enterprise Technologies
Experimental investigation and modelling of residual stresses in face milling of Al-6061-T3 using neural network
...Show More Authors

Milling process is a common machining operation that is used in the manufacturing of complex surfaces. Machining-induced residual stresses (RS) have a great impact on the performance of machined components and the surface quality in face milling operations with parameter cutting. The properties of engineering material as well as structural components, specifically fatigue life, deformation, impact resistance, corrosion resistance, and brittle fracture, can all be significantly influenced by residual stresses. Accordingly, controlling the distribution of residual stresses is indeed important to protect the piece and avoid failure. Most of the previous works inspected the material properties, tool parameters, or cutting parameters, bu

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Automatic Identification of Ear Patterns Based on Convolutional Neural Network
...Show More Authors

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Boltzmann Machine Neural Network for Arabic Speech Recognition
...Show More Authors

Boltzmann mach ine neural network bas been used to recognize the Arabic speech.  Fast Fourier transl(>lmation algorithm has been used t() extract speciral 'features from an a caustic signal .

The  spectral  feature size is reduced by series of operations in

order to make it salable as input for a neural network which is used as a recogni zer by Boltzmann Machine Neural  network which has been used as a recognizer for phonemes . A training set consist of a number of Arabic phoneme repesentations, is used to train lhe neuntl network.

The neural network recognized Arabic. After Boltzmann Machine Neura l    network   training  the  system   with 

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
International Journal On “technical And Physical Problems Of Engineering”
Age Estimation Utilizing Deep Learning Convolutional Neural Network
...Show More Authors

Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes

... Show More
Scopus (10)
Scopus
Publication Date
Fri Dec 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Studying of the Amount of Energy Required to Operate the Nursery Tray Planting Machine
...Show More Authors
Abstract<p>A study was conducted at the University of Baghdad-College of Agricultural Engineering Sciences - Department of Agricultural Machinery and Equipment for the agricultural season 2023 with the aim of designing, manufacturing and testing a machine used to planting agricultural nursery tray with different types of vegetable or horticultural seeds or forest seeds of various forms, and using different agricultural media where they are conducted The planting process is by pulling the seeds with a negative pressure vacuum system, and then they are feding to the dishes in their right place to complete the planting process. The study included three factors: The speed of the main belt in three l</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iaes International Journal Of Artificial Intelligence
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref