Numerical Investigation was done for steady state laminar mixed convection and thermally and hydrodynamic fully developed flow through horizontal rectangular duct including circular core with two cases of time periodic boundary condition, first case on the rectangular wall while keeping core wall constant and other on both the rectangular duct and core walls. The used governing equations are continuity momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C.) methods. The Finite Difference approach with the Line Successive Over Relaxation (LSOR) method is used to obtain all the computational results the (B.F.C.) method is used to generate the grid of the problem. A computer program (Fortan 90) is built to calculate Nusselt Number (Nu) in steady state. The fluid Prandtl number is 0.7 Rayleigh Number 1<Ra<106, Reynolds number 1<Re<2000. For the range of parameters considered, results show that the time periodic boundary condition enhance heat transfer. It is also indicated in the results that heat transfer from the surface of the circle exceeds that of the rectangle duct. Comparisons with other research show good agreement.
This study aims to investigate the effect of changing skins material on the strength of sandwich plates with circular hole when subjected to mechanical loads. Theoretical, numerical and experimental analyses are done for sandwich plates with hole and with two face sheet materials. Theoretical analysis is performed by using sandwich plate theory which depends on the first order shear deformation theory for plates subjected to tension and bending separately. Finite element method was used to analyse numerically all cases by ANSYS program.
The sandwich plates were investigated experimentally under bending and buckling load separately. The relationship between stresses and the ratio of hole diameter to plate width (d/b) are built, by
... Show MoreThe overlap between science and knowledge is a feature of the 21st century. This integration, which crosses the traditional boundaries between academic disciplines, has occurred because of the emergence of new needs and new professions. This overlap has overshadowed the arts in general and design in particular. The Design achievements have not been far away from the attempts of integration of more than one type or design application to produce new outputs unique in its functional and aesthetic character, including the terms of internal graphic design.
The researcher raises the question of the functional dimension of graphic design in the internal space, in order to answer it through the methodological framework, which includes th
... Show MoreThe current research dealt with the study of space compatibility and its role in enhancing the functional aspect of the design of the interior spaces of isolation hospitals by finding a system or format that is compatible with the nature of the changes occurring in the structure and function of the space system, as well as contributing to enhancing compatibility between the functional aspect and the interior space. Therefore, the designer must The interior is the study of the functional and spatial aspects as they are the basic aspects for achieving suitability, and through the interaction between the person and the place, the utilitarian performance characteristics are generated that the interior designer is interested in and tries to d
... Show MoreAn experimental and numerical study has been carried out to investigate the forced convection heat transfer by clean or dusty air in a two dimensional annulus enclosure filled with porous media (glass beads) between two vertical concentric cylinders. The outer cylinder is of (82 mm) outside diameters and the inner cylinder of (27 mm) outside diameter. Under steady state condition; the inner cylinder surface is maintained at a high temperature by applying a uniform heat flux and the outer cylinder surface at an ambient temperature. The investigation covered values of input power of (6.3, 4.884, 4.04 and 3.26 W), Reynolds number values of (300, 700, 1000, 1500, and 2000) and dust ratio values (density number N) of (2, 4, 6 and 8). A comput
... Show MoreBackground: This study aimed to evaluate the outcome of long-term results of dacryocystorhinostomy (DCR) techniques in specialized eye care center in Iraq.
Subjects and Method: This is a prospective study of 650 patients from July 2014 to July 2019 with nasolacrimal duct obstruction in Ibn Al Haitham Eye Teaching Hospital. A preoperative questionnaire was done, then one month, three months, six months and one year postoperatively. The success of surgery defined as follow; Absence of epiphora completely, Resolve of dacryocele or mucocele or any new attack of daryocystitis, Appearance of fluorescein dye from nose in fluorescein disappearance test, Successful irriga
... Show MoreIn this paper, the classical continuous triple optimal control problem (CCTOCP) for the triple nonlinear parabolic boundary value problem (TNLPBVP) with state vector constraints (SVCs) is studied. The solvability theorem for the classical continuous triple optimal control vector CCTOCV with the SVCs is stated and proved. This is done under suitable conditions. The mathematical formulation of the adjoint triple boundary value problem (ATHBVP) associated with TNLPBVP is discovered. The Fréchet derivative of the Hamiltonian" is derived. Under suitable conditions, theorems of necessary and sufficient conditions for the optimality of the TNLPBVP with the SVCs are stated and proved.
This paper deals with testing a numerical solution for the discrete classical optimal control problem governed by a linear hyperbolic boundary value problem with variable coefficients. When the discrete classical control is fixed, the proof of the existence and uniqueness theorem for the discrete solution of the discrete weak form is achieved. The existence theorem for the discrete classical optimal control and the necessary conditions for optimality of the problem are proved under suitable assumptions. The discrete classical optimal control problem (DCOCP) is solved by using the mixed Galerkin finite element method to find the solution of the discrete weak form (discrete state). Also, it is used to find the solution for the discrete adj
... Show More