Preferred Language
Articles
/
ijcpe-415
Drying of solid Materials by vacuum Fluidized Bed Dryer
...Show More Authors

In the present study the performance of drying process of dffirent solid materials by batch fluidized bed drying
under vacuum conditions was investigated. Three, different solid materials, namely; ion exchange resin-8528,
aspirin and paracetamol were used. The behavior of the drying curves as well as the rate of drying of these
materials had been studied. The experiments were caried out in a 0.0381 m column diameter fluidized by hot
air under yacuum conditions. Four variables affecting on the rate of drying were studied' these variables are
vacuum pressure (100 - 500 mm Hg), air temperature (303-323 K), particle size (0.3-0.8 mm) and initial
moisture content (0.35-0.55 g/g solid)-for resin and (0.1-0.2 g/g soltid) for aspirin and paracetamol. The study of
the characteristics of the drying curves showed that the drying behavior depends mainly on the type of the solid
material and on the operating conditions. It was found that the drying rate at vacuum conditions is enhanced by
increasing the operating temperature of the air and decreases by increasing the initial moisture content of the
material and the particle size. Moreover, an experiment was carried out to study the drying of aspirin solid
material which is dried in atmospheric fluidized bed dryer operating at the same conditions to compare the
temperature and time needed in both techniques. It was found that the temperature needed for vacuum fluidized
bed dryer (303 K) is less than needed by fluidized bed dryer operating at atmospheric pressure (323 K). A
simpliled model'for the drying of solids in the constant-rate period in a batch fluidized bed is developed,
considering the bed to consist of dense phase and bubble phase with heat and mass transfer between the phases.
It is assumed that the solids in dense phase to be in thermal equilibrium with the interstitial gas in the dense
phase. The bubble size, its rise velocity, and the bubble volume fraction are taken into account while developing
the model. The model is compared with experimental data reported in this study and found to match
satisfactorily.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Aug 06 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study of Optical Properties of CdS Films Prepared by Thermal Evaporation in Vacuum
...Show More Authors

CdS films were prepared by thermal evaporation at pressure (10-6torr) of 1μm thickness onto glass substrate by using (Mo) boat. The optical properties of CdS films, absorbance, transmittance and reflectance were studied in wavelength range of (300-900)nm. The refractive index, extinction coefficient, and absorption coefficient were also studied. It's found that CdS films have allowed direct and forbidden transition with energy gap 2.4eV and 2.25eV respectively and it also has high absorption coefficient (α >104cm-1).

View Publication Preview PDF
Publication Date
Wed Jul 05 2023
Journal Name
Chalcogenide Letters
Optimization physical properties of CdTe /Si solar cell devices fabricated by vacuum evaporation
...Show More Authors

We investigated at the optical properties, structural makeup, and morphology of thin films of cadmium telluride (CdTe) with a thickness of 150 nm produced by thermal evaporation over glass. The X-ray diffraction study showed that the films had a crystalline composition, a cubic structure, and a preference for grain formation along the (111) crystallographic direction. The outcomes of the inquiry were used to determine these traits. With the use of thin films of CdTe that were doped with Ag at a concentration of 0.5%, the crystallization orientations of pure CdTe (23.58, 39.02, and 46.22) and CdTe:Ag were both determined by X-ray diffraction. orientations (23.72, 39.21, 46.40) For samples that were pure and those that were doped with

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Structural and electrical properties of tellurium thin films prepared by vacuum thermal deposition
...Show More Authors

Thin films of highly pure (99.999%) Tellurium was prepared by high vacuum technique (5*10-5torr), on glass substrates .Thin films have thickness 0.6m was evaporated by thermal evaporation technique. The film deposited was annealed for one hour in vacuum of (5*10-4torr) at 373 and 423 K. Structural and electrical properties of the films are studies. The x-ray diffraction of the film represents a poly-crystalline nature in room temperature and annealed film but all films having different grain sizes. The d.c. electrical properties have been studied at low and at relatively high temperatures and show that the conductivity decreases with increasing temperature at all range of temperature. Two types of conduction mechanisms were found to d

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Cu doping on the electrical Properties of ZnTe by Vacuum Thermal Evaporation
...Show More Authors

In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hal

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jun 15 2021
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Solubility and Dissolution Enhancement of Ebastine by Surface Solid Dispersion Technique
...Show More Authors

Ebastine (EBS) is a non-sedating antihistamine with a long duration of action. This drug has predominantly hydrophobic property causing a low solubility and low bioavailability. Surface solid dispersions (SSD) is an effective technique for improving the solubility and dissolution rate of poorly soluble drugs by using hydrophilic water insoluble carriers.

The present study aims to enhance the solubility and dissolution rate of EBS by using surface solid dispersion technique. Avicel® PH101, Avicel® PH 102, croscarmellose sodium(CCS) and sodium starch glycolate(SSG) were used as water insoluble hydrophilic carriers.

The SSD formulations of EBS were prepared by the solvent evaporation method in different drug:  carrier

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Bioethanol Production from Olive Solid Residues by Using Rhodotorula Minuta
...Show More Authors

     Bioethanol is an attractive fuel with higher potential for energy security and environmental safety. Olive solid residues were used as a raw material for the production of bioethanol through the use of different preliminary treatments . Separate treatments with cellulose, hydrochloric acid (HCl 5%), sulfuric acid (H2SO4 2%), and liquid ammonia NH4OH (20%) were used to convert cellulose and hemicellulose into monosaccharaides. The production of ethanol was observed during the fermentation process using R. minuta under anaerobic conditions.  After 3 days of fermentation, lowest concentrations of ethanol of  0.233, 0.249, 0.261, and 0.275 g/ l were produced from ol

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 19 2022
Journal Name
Iraqi Journal Of Science
Influence of reactant catalyst type and Drying Control Chemical Additives (DCCA) on optical and structural properties of silica aerogel prepared via ambient pressure drying
...Show More Authors

We have studied the synthesis environment of ambient pressure silica aerogels influence on their resulting morphological and optical properties. Transparent nanoporous silica aerogel was synthesized at ambient pressure using tetraethylorthosilicate precursor via a sol-gel process. Effect of drying control chemical additives and catalyst on physical properties was investigated. Trimethylchlorolsilane was employed as a hydrophobic reagent in the surface modification process. All aerogel samples were prepared utilizing a subcritical procedure under reactant pH fixed at 8.3, using just ammonium hydroxide or together with ammonium fluoride as catalyst. The effects catalyst types as well as drying control chemical additives on the physical pro

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Study of the Drying of Ethanol using Zeolite Molecular Sieves
...Show More Authors

View Publication Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Preparation of Light Fuel Fractions from Heavy Vacuum Gas Oil by Thermal Cracking Reaction
...Show More Authors

This work deals with thermal cracking of heavy vacuum gas oil which produced from the top of vacuum distillation unit at Al- DURA refinery, by continuous process. An experimental laboratory plant scale was constructed in laboratories of chemical engineering department, Al-Nahrain University and Baghdad University. The thermal cracking process was carried out at temperature ranges between 460-560oC and atmospheric pressure with liquid hourly space velocity (LHSV) equal to 15hr-1.The liquid product from thermal cracking unit was distilled by atmospheric distillation device according to ASTM D-86 in order to achieve two fractions, below 220oC as a gasoline fraction and above 220oC as light cycle o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Design and manufacturing of supercritical drying autoclave for aerogel production
...Show More Authors

This article will address autoclave design considerations and
manufacturing working with high pressure low temperature
supercritical drying technique to produce silica aerogel. The design
elects carbon dioxide as a supercritical fluid (31.7 oC and 72.3 bar).
Both temperature and pressure have independently controlling
facility through present design. The autoclave was light weight (4.5
kg) and factory-made from stainless steel. It contains a high pressure
window for monitoring both transfer carbon dioxide gas to liquid
carbon dioxide and watching supercritical drying via aerogel
preparation process. In this work aerogel samples were prepared and
the true apparent densities, total pore volume and pore size

... Show More
View Publication Preview PDF
Crossref (1)
Crossref