In the present study the performance of drying process of dffirent solid materials by batch fluidized bed drying
under vacuum conditions was investigated. Three, different solid materials, namely; ion exchange resin-8528,
aspirin and paracetamol were used. The behavior of the drying curves as well as the rate of drying of these
materials had been studied. The experiments were caried out in a 0.0381 m column diameter fluidized by hot
air under yacuum conditions. Four variables affecting on the rate of drying were studied' these variables are
vacuum pressure (100 - 500 mm Hg), air temperature (303-323 K), particle size (0.3-0.8 mm) and initial
moisture content (0.35-0.55 g/g solid)-for resin and (0.1-0.2 g/g soltid) for aspirin and paracetamol. The study of
the characteristics of the drying curves showed that the drying behavior depends mainly on the type of the solid
material and on the operating conditions. It was found that the drying rate at vacuum conditions is enhanced by
increasing the operating temperature of the air and decreases by increasing the initial moisture content of the
material and the particle size. Moreover, an experiment was carried out to study the drying of aspirin solid
material which is dried in atmospheric fluidized bed dryer operating at the same conditions to compare the
temperature and time needed in both techniques. It was found that the temperature needed for vacuum fluidized
bed dryer (303 K) is less than needed by fluidized bed dryer operating at atmospheric pressure (323 K). A
simpliled model'for the drying of solids in the constant-rate period in a batch fluidized bed is developed,
considering the bed to consist of dense phase and bubble phase with heat and mass transfer between the phases.
It is assumed that the solids in dense phase to be in thermal equilibrium with the interstitial gas in the dense
phase. The bubble size, its rise velocity, and the bubble volume fraction are taken into account while developing
the model. The model is compared with experimental data reported in this study and found to match
satisfactorily.
Numerical study is adapted to combine between piezoelectric fan as a turbulent air flow generator and perforated finned heat sinks. A single piezoelectric fan with different tip amplitudes placed eccentrically at the duct entrance. The problem of solid and perforated finned heat sinks is solved and analyzed numerically by using Ansys 17.2 fluent, and solving three dimensional energy and Navier–Stokes equations that set with RNG based k−ε scalable wall function turbulent model. Finite volume algorithm is used to solve both phases of solid and fluid. Calculations are done for three values of piezoelectric fan amplitudes 25 mm, 30 mm, and 40 mm, respectively. Results of this numerical study are compared with previous b
... Show MoreA single step extraction-cleanup procedure using porous membrane-protected micro-solid phase extraction (μ-SPE) in conjunction with liquid chromatography–tandem mass spectrometry for the extraction and determination of aflatoxins (AFs) B1, B2, G1 and G2 from food was successfully developed. After the extraction, AFs were desorbed from the μ-SPE device by ultrasonication using acetonitrile. The optimum extraction conditions were: sorbent material, C8; sorbent mass, 20 mg; extraction time, 90 min; stirring speed, 1000 rpm; sample volume, 10 mL; desorption solvent, acetonitrile; solvent volume, 350 μL and ultrasonication period, 25 min without salt addition. Under the optimum conditions, enrichment factor of 11, 9, 9 and 10 for AFG2, AFG1
... Show MoreMunicipal solid waste is one of the most important environmental problems in the world and is an important source of environmental pollution and contributes significantly to the pollution of the basic environmental elements of soil, water and air. The management of municipal waste in general is a process of monitoring, collection, treatment or recycling if possible or disposal of waste. This term is used for waste produced by some human activities. States provide this process to mitigate the negative effects of waste on the environment, health and appearance of the city. It is possible to find solutions to the problem of solid waste and make it an important source of income and contribute to securing employment oppor
... Show MoreABSTRACT Background: This study aimed to study the effect of some acidic drinks (Vinegars and fresh Orange juice) and energy drinks (Red bull) on surface roughness of three types of bulkfill composite materials: Filtek posterior bulkfill (3M), Sonicfill (Kerr) and Filtek p60 (3M). Materials and Methods: Total number of 120 samples are prepared by using a mold of (12mm diameter and 3mm height), which were divided into three groups forty samples for each group: Group A: Filtek bulkfill posterior composite (3M), Group B: Sonicfill composite (Kerr), Group C: Filtek P60 (3 M) which then divided into four sub- groups (n=10) (1) samples were kept in distilled water as a control group (2) samples were immersed in Redbull (3) samples were immersed
... Show MoreIn the present work the performance of semifluidized bed adsorber was evaluated for removal of phenolic compound from wastewater using commercial activated carbon as adsorbent. P-chlorophenol (4-Chlorophenol) and o-cresol (2-methylphenol) was selected as a phenolic compound for that purpose. The phenols percent removal, in term of breakthrough curves were studied as affected by hydrodynamics limitations which include minimum and maximum semifluidization velocities and packed bed formation in the column by varying various parameters such as inlet liquid superficial velocity (from Uminsf to 8Uminsf m/s), and retaining grid (sometimes referred to as adsorbent loading) to initial static bed height ratio (from 3-4.5). In
... Show MoreMagnetic Abrasive Finishing (MAF) is an advanced finishing method, which improves the quality of surfaces and performance of the products. The finishing technology for flat surfaces by MAF method is very economical in manufacturing fields an electromagnetic inductor was designed and manufactured for flat surface finishing formed in vertical milling machine. Magnetic abrasive powder was also produced under controlled condition. There are various parameters, such as the coil current, working gap, the volume of powder portion and feed rate, that are known to have a large impact on surface quality. This paper describes how Taguchi design of experiments is applied to find out important parameters influencing the surface quality generated during
... Show MoreThere are many diseases that affect the arteries, especially those related to their elasticity and stiffness, and they can be guessed by estimating and calculating the modulus of elasticity. Hence, the accurate calculation of the elastic modulus leads to an accurate assessment of these diseases, especially in their early stages, which can contribute to the treatment of these diseases early. Most of the calculations used the one-dimensional (1D) modulus of elasticity. From a mechanical point of view, the stresses to which the artery is subjected are not one-dimensional, but three-dimensional. Therefore, estimating at least a two-dimensional (2D) modulus of elasticity will necessarily be more accurate. To the knowledge of researchers, there i
... Show MoreThis study was done to find a cheap, available and ecofriendly materials that can remove eosin y dye from aqueous solutions by adsorption in this study, two adsorbent materials were used, the shells of fresh water clam (Cabicula fluminea) and walnut shells. To make a comparison between the two adsorbents, five experiments were conducted. First, the effects of the contact time, here the nut shell removed the dye quickly, while the C. flumina need more contact time to remove the dye. Second, the effects of adsorbent weight were examined. The nut shell was very promising and for all used adsorbent weight, the R% ranged from 94.87 to 99.29. However C. fluminea was less effective in removing the dye with R% ranged from 47.59 to 55.39. The thi
... Show MoreTo evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were
... Show More