In the present study the performance of drying process of dffirent solid materials by batch fluidized bed drying
under vacuum conditions was investigated. Three, different solid materials, namely; ion exchange resin-8528,
aspirin and paracetamol were used. The behavior of the drying curves as well as the rate of drying of these
materials had been studied. The experiments were caried out in a 0.0381 m column diameter fluidized by hot
air under yacuum conditions. Four variables affecting on the rate of drying were studied' these variables are
vacuum pressure (100 - 500 mm Hg), air temperature (303-323 K), particle size (0.3-0.8 mm) and initial
moisture content (0.35-0.55 g/g solid)-for resin and (0.1-0.2 g/g soltid) for aspirin and paracetamol. The study of
the characteristics of the drying curves showed that the drying behavior depends mainly on the type of the solid
material and on the operating conditions. It was found that the drying rate at vacuum conditions is enhanced by
increasing the operating temperature of the air and decreases by increasing the initial moisture content of the
material and the particle size. Moreover, an experiment was carried out to study the drying of aspirin solid
material which is dried in atmospheric fluidized bed dryer operating at the same conditions to compare the
temperature and time needed in both techniques. It was found that the temperature needed for vacuum fluidized
bed dryer (303 K) is less than needed by fluidized bed dryer operating at atmospheric pressure (323 K). A
simpliled model'for the drying of solids in the constant-rate period in a batch fluidized bed is developed,
considering the bed to consist of dense phase and bubble phase with heat and mass transfer between the phases.
It is assumed that the solids in dense phase to be in thermal equilibrium with the interstitial gas in the dense
phase. The bubble size, its rise velocity, and the bubble volume fraction are taken into account while developing
the model. The model is compared with experimental data reported in this study and found to match
satisfactorily.
Existing leachate models over–or underestimates leachate generation by up to three orders of magnitude. Practical experiments show that channeled flow in waste leads to rapid discharge of large leachate volumes and heterogeneous moisture distribution. In order to more accurately predict leachate generation, leachate models must be improved. To predict moisture movement through waste, the two–domain PREFLO, are tested. Experimental waste and leachate flow values are compared with model predictions. When calibrated with experimental parameters, the PREFLO provides estimates of breakthrough time. In the short term, field capacity has to be reduced to 0.12 and effective storage and hydraulic conductivity of the waste must be increased to
... Show MoreThe tunnel’s stability during construction is a very important matter. Some methods have been proposed for stability evaluation, but the hazard warning levels (HWLs) are more applicable among these methods. Despite monitoring and applying HWLs, several collapses in Shibli twin tunnels in Iran have cast doubts on the accuracy of this criterion in the presence of water. In this study, the critical strains under different water contents were measured through uniaxial compressive strength tests on 11 different shale and marl samples. A comparison of laboratory tests and numerical results shows that the influence of the moisture content on the critical strain is negligible. In addition, the results show that there is no dir
... Show MoreThe importance of specifying proper aggregate grading for achieving satisfactory performance in pavement applications has long been recognized. To improve the specifications for superior performance, there is a need to understand how differences in aggregate gradations within the acceptable limits may affect unbound aggregate base behavior. The effects of gradation on strength, modulus, and deformation characteristics of high-quality crushed rock base materials are described here. Two crushed rock types commonly used in constructing heavy-duty granular base layers in the State of Victoria, Australia, with three different gradations each were used in this study. The gradations used represent the lower, medium, and upper gradation li
... Show MoreThe materials of soil were affected by multi reasons; such as human activities, floods, tidal waves, ... etc. The change of the soil contents could be measured through different indexes; such as electric conductivities, salinity, concentration of the heavy elements, and concentration of essential elements ... etc. The land cover is affected by natural influences, like tidal energy, which plays a negative role in the salinization of land adjacent to the coasts, causing a problem for soils in all its details represented in changing of the dissolved elements in soil. One of the most important natural factors that cause soil salinity is human activity in all its forms, and one of the most important causes of salinity is the phenomenon o
... Show MoreBackground: The microhardness of a composite resin is a vital parameter that is used to determine its clinical behavior. Measuring the microhardness of a composite resin has been used as an indirect method to assess its degree of conversion and extent of polymerization. The purpose of this in vitro study was to evaluate the effect of three curing distances (0, 2, and 4 mm) on the microhardness of the top and bottom surfaces of three types of flowable bulk-fill composite resins (smart dentin replacement, Opus bulk fill flow, and Tetric N). Material and method: Sixty-three specimens from the three types of composite resins (n=21) were fabricated using Teflon mold with a 4mm depth and a 5 mm internal diameter and cured for 20 seconds. For e
... Show More