In the present study the performance of drying process of dffirent solid materials by batch fluidized bed drying
under vacuum conditions was investigated. Three, different solid materials, namely; ion exchange resin-8528,
aspirin and paracetamol were used. The behavior of the drying curves as well as the rate of drying of these
materials had been studied. The experiments were caried out in a 0.0381 m column diameter fluidized by hot
air under yacuum conditions. Four variables affecting on the rate of drying were studied' these variables are
vacuum pressure (100 - 500 mm Hg), air temperature (303-323 K), particle size (0.3-0.8 mm) and initial
moisture content (0.35-0.55 g/g solid)-for resin and (0.1-0.2 g/g soltid) for aspirin and paracetamol. The study of
the characteristics of the drying curves showed that the drying behavior depends mainly on the type of the solid
material and on the operating conditions. It was found that the drying rate at vacuum conditions is enhanced by
increasing the operating temperature of the air and decreases by increasing the initial moisture content of the
material and the particle size. Moreover, an experiment was carried out to study the drying of aspirin solid
material which is dried in atmospheric fluidized bed dryer operating at the same conditions to compare the
temperature and time needed in both techniques. It was found that the temperature needed for vacuum fluidized
bed dryer (303 K) is less than needed by fluidized bed dryer operating at atmospheric pressure (323 K). A
simpliled model'for the drying of solids in the constant-rate period in a batch fluidized bed is developed,
considering the bed to consist of dense phase and bubble phase with heat and mass transfer between the phases.
It is assumed that the solids in dense phase to be in thermal equilibrium with the interstitial gas in the dense
phase. The bubble size, its rise velocity, and the bubble volume fraction are taken into account while developing
the model. The model is compared with experimental data reported in this study and found to match
satisfactorily.
Introduction: Although soap industry is known from hundreds of years, the development accompanied with this industry was little. The development implied the mechanical equipment and the additive materials necessary to produce soap with the best specifications of shape, physical and chemical properties. Objectives: This research studies the use of vacuum reactive distillation VRD technique for soap production. Methods: Olein and Palmitin in the ratio of 3 to 1 were mixed in a flask with NaOH solution in stoichiometric amount under different vacuum pressures from -0.35 to -0.5 bar. Total conversion was reached by using the VRD technique. The soap produced by the VRD method was compared with soap prepared by the reaction - only method which
... Show MoreRecently, many materials have shown that they can be used as alternatives to chemicals materials in order to be used to improve the properties of drilling fluids. Some of these materials are banana peels and corn cobs which both are considered environmentally- friendly materials. The results of the X-ray diffraction examination have proved that the main components of these materials are cellulose and hemicellulose, which contribute greatly to the increasing of the effectiveness of these two materials. Due to their distinct composition, these two materials have improved the rheological properties (plastic viscosity and yield point) and reduced the filtration of the drilling fluids to a large extent. The addition rates used for each o
... Show MoreThis study was conducted according to contract with the North Refineries Company-Baiji and deals with the hydrodesulphurization of vacuum gas oil of Kirkuk crude oil, boiling range 611-833 K. A trickle bed reactor packed with a commercial cobalt-molybdenum on alumina catalyst was used. The operating conditions were: temperature range 583-643 K, liquid hourly space velocity range 1.50-3.75 1/h, hydrogen to oil ratio about 250 l/l and pressure kept constant at 3.5MPa.
The results showed that the aromatic content decreased and sulfur removal increased with increasing temperature and decreasing space velocity. The properties (viscosity, density, flash point and carbon residue) of the products decrease with temperature increasing, but the
The fabricated Photodetector n-CdO /-Si factory thin films Altboukaraharara spatial silicon multi- crystallization of the type (n-Type) the deposition of a thin film of cadmium and at room temperature (300K) and thickness (300 ± 20nm) and the time of deposition (1.25sec) was antioxidant thin films cadmium (Cd) record temperature (673k) for one hour to the presence of air and calculated energy gap optical transitions electronic direct ( allowed ) a function of the absorption coefficient and permeability and reflectivity by recording the spectrum absorbance and permeability of the membrane record within the wavelengths (300 1100nm). was used several the bias ranged between 1-5 Volts. The results showed that this
... Show MoreThin films of Zinc Selenide ZnSe have been prepared by using thermal evaporation in vacuum technique (10-5Torr) with thickness (1000, 2700, 4000) A0 and change electrode material and deposited on glass substrates with temperature (373K) and study some electrical properties at this temperature . The graphs shows linear relation between current and voltage and the results have shown increases in the value of current and electrical conductivity with increase thickness and change electrode material from Aluminum to Copper
Select 30 isolate from Bacillus to detect the ability to produce pullulanase enzyme in liquid and solid state fermentation, and use the isolate Bacillus licheniformis (Bs18) because the highest production of enzyme, the optimum condition for the production of enzyme by liquid state fermentation (LSF) in growen with: media contains starch + pullulan as a carbon source, peptone as a nitrogen source, inoculums size 2 ml, and incubated at 40 C° with pH 7 for 48 hrs. In addition pullulanase production by solid state fermentation (SSF) was investigated using isolated Bacillus licheniformis (Bs18). Optimization of process parameters were carried out ,the optimum solid substrate , Temperature , pH , incubation period , inoculation size , hydrat
... Show MoreIn this research the hard chromium electroplating process, which is one of the common methods of overlay coating was used, by using chromium acid as source of chromium and sulphuric acid as catalyst since the ratio between chromic acid and sulphuric acid is (100 : 1) consequently. Plating process was made by applying current of density (40 Amp / dm2) and the range of solution temperature was (50 – 55oC) with different time periods (1-5 hr). A low carbon steel type (Ck15) was used as substrate for hard chromium electroplating. Solid carburization was carried out for hard chromium plating specimen at temperature (925oC) with time duration (2 hr) to be followed with quenching and tempering
... Show MoreThe influence of dye laser Rhodamine 6G (R6G) on the molecular structure of silica aerogel prepared by normal drying method is reported. The study also tests the effect of dye concentration on morphological and physical properties. Fourier Transform Infrared Spectroscopy (FTIR) was used to examine this effect, in addition to Field Emission Scanning Electron Microscopy (FESEM), contact angle, and surface area measurement. It was found from FTIR data that the dye laser stays with the inner structure of samples and, at high concentration, it gives a good influence by reducing (OH) band and increasing (CH) band, leading to changing the contact angle from (123á´¼) to (145á´¼). Whereas particle size varied from 22 n
... Show MoreIn this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phase with crystallites size of 17.459 nm. Th
... Show MoreAn experimental study was conducted with low cost natural waste adsorbent materials, barley husks and eggshells, for the removal of Levofloxacine (LEVX) antibacterial from synthetic waste water. Batch sorption tests were conducted to study their isothermal adsorption capacity and compared with conventional activated carbon which were, activated carbon > barley husks > eggshells with removal efficiencies 74, 71 and 42 % with adsorbents doses of 5, 5 and 50 g/L of activated carbon, barley husks, and eggshells respectively. The equilibrium sorption isotherms had been analyzed by Langmuir, Freundlich, and Sips models, and their parameters were evaluated. The experimental data were correlated well with the Langmuir model which gives the
... Show More