In order to reduce the losses due to evaporation in the stored crude oil and minimizing the decrease in °API many affecting parameters were studied (i.e. Different storage system, namely batch system with different types of storage tanks under different temperatures and:or different pressures). Continuous circulation storage system was also studied. It was found that increasing pressure of the inert gas from 1 bar to 8 bar over the surface of the crude oil will decrease the percentage losses due to evaporation by (0.016%) and decrease the change of °API by (0.9) during 96 hours storage time. Similarly using covering by surfactant (potassium oleate) or using polymer (polyurethane foam) decreases the percentage evaporation losses compared with uncovered surface of the blend crude oil. In each surfactants and polymers the layer thickness was (1.0, 1.5, 2.0, 2.5, 3.0 cm), and increasing the thickness of the surfactant to 2.5 cm or of the polymer to 3 cm was found to be best required thickness. Surfactant gave lower percentage evaporation losses than polymer, for fixed roof tank (i.e. 0.299%, 0.383%) for 120 hours evaporation time. Different processed storage tanks namely (fixed roof, external moving roof, fixed and internal moving) were studied and fixed and moving roof was the best in reducing evaporation losses (0.453%) for 120 hours. In continuous circulation for proposed continuous storage system, the percentage evaporation losses for covered with surfactant, covered with polymer, and uncovered surface of blend crude oil were (0.328%), (0.378%), and (0.45%) respectively at 24 °C for 96 hours evaporation time.
Laurylamine hydrochloride CH3(CH2)11 NH3 – Cl has been chosen from cationic surfactants to produce secondary oil using lab. model shown in fig. (1). The relationship between interfacial tension and (temperature, salinity and solution concentration) have been studied as shown in fig. (2, 3, 4) respectively. The optimum values of these three variables are taken (those values that give the lowest interfacial tension). Saturation, permeability and porosity are measured in the lab. The primary oil recovery was displaced by water injection until no more oil can be obtained, then laurylamine chloride is injected as a secondary oil recovery. The total oil recovery is 96.6% or 88.8% of the residual oil has been recovered by this technique as shown
... Show MoreThe performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization des
The performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization des
The performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization design (CRD), with three replicates for each treatment at th
... Show MoreThis study was aimed to investigate the effect of essential oil extracted from the yellow peels of Citrus aurantium on the growth of four species of fungi: Penicillium expansum, Penicillium oxalicum, Fusarium oxysporum and Fusarium proliferatum and effect of one fungicide: Aliette (fosetyl-aluminum) against these fungi. The results showed that the essential oil of C. aurantium inhibited the radial growth of P. oxalicum at concentration 4.5% while P. expansum and F. oxysporum at concentrations 5% and F. proliferatum at concentrations 5.5% additionally the one fungicide tested showed inhibitory effect on radial growth of these fungi. So that there is a negative relationship between the increasing of concentration and radial growth of fungi.
The diesel oil type S-3 specified for diesel engine has limited the suitability for diesel trucks for 8000 km, but didn't clarify its suitability if used in tractor engines.It is known that the work style of farm tractor differs from that of other vehicles where tractors are used for all the activities in sever conditions and under the complete usage of the available power and capability, so there is no sign or indication of the usage period of this oil in tractor's engine. The oil has been used on Cirta C6806 tractors. The manual book of the tractor's engine, Deutz recommends changing the oil every 100 hrs. Therefore the main goal of this research is to give the recommended working hours for S-3 diesel oil when used in farm tractor engines
... Show MoreAn investigation was conducted for the improvement of viscosity index of light lubricating oil fraction (40 stock)
obtained from vacuum distillation unit of lube oil plant of Daura Refinery, using solvent extraction process.
In this study furfural solvent was used to extract the undesirable materials which reduce the viscosity index of raw
lubricating oil fraction.
The studied effecting variables of extraction were extraction temperature range from 70 to 110°C, and solvent to oil
ratio range from 1:1 to 4:1 (wt/wt).
The n-d-M method was used for calculation of carbon distribution and structural group analysis of the raffinate
produced from furfural extraction.
Also the three component phase diagram for a mixed-ba
Fatty Acid Methyl Ester (FAME) produced from biomass offers several advantages such as renewability and sustainability. The typical production process of FAME is accompanied by various impurities such as alcohol, soap, glycerol, and the spent catalyst. Therefore, the most challenging part of the FAME production is the purification process. In this work, a novel application of bulk liquid membrane (BLM) developed from conventional solvent extraction methods was investigated for the removal of glycerol from FAME. The extraction and stripping processes are combined into a single system, allowing for simultaneous solvent recovery whereby low-cost quaternary ammonium salt-glycerol-based deep eutectic solvent (DES) is used as the membrane phase.
... Show More
The ability of pulverized walnut-shell to remove oil from aqueous solutions has been studied. It involves two-phase process which consists of using walnut-shell as a filtering bed for the accumulation and adsorption of oil onto its surface. Up to 96% oil removal from synthetic wastewater samples was achieved while tests results showed that 75% of oil can be removed from the actual wastewater discharged from Al- Duara refinery in the south of Baghdad.
The extraction of Basil oil from Iraqi Ocimum basillicum leaves using n-hexane and petroleum ether as organic solvents were studied and compared. The concentration of oil has been determined in a variety of extraction temperatures and agitation speed. The solvent to solid ratio effect has been studied in order to evaluate the concentration of Ocimum basillicum oil. The optimum experimental conditions for the oil extraction were established as follows: n-hexane as organic solvent, 60 °C extraction temperature, 300 rpm agitation speed and 40:1mL:g amount of solvent to solid ratio.