This research deals with study of the effect of additives on rheological properties (yield point, plastic viscosity ,and apparent viscosity) of emulsions. Twenty seven emulsion samples were prepared; all emulsions in this investigation are invert emulsions when water droplets are dispersed in diesel oil. The resulting emulsions are called water-in-oil (W/O) emulsions. The rheological properties of these emulsions were investigated using a couett coaxial cylinder rotational viscometer (Fann-VG model 35 A), by measuring shear stress versus shear rate. It was found that the effect of additives on rheological properties of emulsions as follow: the increase in the concentration of asphaltic material tends to increase the rheological properties of emulsions, the increase in the volume percentage of barite tends to increase the rheological properties of emulsions and the increase in the volume percentage of emulsifier has a little effect on the value of rheological properties, but in the same time it increase the stability of emulsions with temperature because it surrounded water droplets.
ABSTRACT
The effect of adding raw bacteriocin produced by Lactobacillus bulgaricus to cheese curd at an amount of (5 and 10 and 15) mL/kg cheese as a biological preservative to prolong the shelf life of soft cheese, in addition to the control treatment, knowing that each 1 mL of bacteriocin filter contains 15 units/ mL of bacteriocin. The results of the physicochemical, microbial and sensory tests for cheese stored at refrigerator temperature for a period (zero) to (21) d of adding bacteriocin showed the superiority of the treatment of cheese added to 15 mL/kg cheese of bacteriocin over the rest of the other treatments during the storage period, wh
... Show MorePhase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreNanotechnology has shown a lot of promise in the oil and gas sectors, including nanoparticle-based drilling fluids. This paper aims to explore and assess the influence of various nanoparticles on the performance of drilling fluids to make the drilling operation smooth, cost effective and efficient. In order to achieve this aim, we exam the effect of Multi Wall Carbon Nanotube and Silicon Oxide Nanoparticles as Nanomaterial to prepare drilling fluids samples.
Anew method for mixing of drilling fluids samples using Ultra sonic path principle will be explained. Our result was drilling fluids with nano materials have high degree of stability.
The results of using Multiwall Carbon Nanotube and Silicon Oxide show t
... Show MoreThis research aims at studying each of the cold and hot thermal wavelengths affecting
Iraq for a minimum climatic course of 11 years beginning from 1992 till 2002. Three stations
were selected including the parts of Iraq surface: Mosul, Baghdad and Basrah.
The wave days were also connected with the related climatic elements represented by
the wind direction and speeds and the relative humidity. It was shown that Iraq is affected by
the rates of hot thermal wave lengths greatly compared to the rates of cold wavelengths. The
results suggested that the highest rate of hot and cold wavelengths recorded over Basra station
was (3.5) days for the cold and (5) days for the hot. While the lowest rates was at Mosul
station
Configured binary polymer blends of epoxy and Polyurethane was chosen varying proportions of these materials led to the production of homogeneous mixtures of Althermust Althermust and descent was poured polyurethane models required in the form of 4 mm thick plates
The dielectric properties of the fabricated composites MgO:ZnO with various mixing ratios (100,75:25,50:50,25:75, and 100 wt. %)were investigated. The structure analysis was conducted using X-ray diffraction. The structure phase, crystallite size and purity of the fabricated MgO:ZnO composites were confirmed using X-ray diffraction spectra. The results declared that the diffraction spectrum of 100%MgO composite samples were compatible with cubic structure along the plane (200) while the structures of residual composite's samples were compatible with hexagonal structures. The crystal size of the most pronounced plane (101) for crystal growth was changed from 30.4 nm to 53.2 nm by increasing ZnO ratio from 25 to 100wt%. The diel
... Show MoreThis paper demonstrates the construction of a modern generalized Exponential Rayleigh distribution by merging two distributions with a single parameter. The "New generalized Exponential-Rayleigh distribution" specifies joining the Reliability function of exponential pdf with the Reliability function of Rayleigh pdf, and then adding a shape parameter for this distribution. Finally, the mathematical and statistical characteristics of such a distribution are accomplished
In this study, SnS thin films were deposited onto glass substrate by thermal evaporation technique at 300K temperature. The SnS films have been prepared with different thicknesses (100,200 &300) nm. The crystallographic analysis, film thickness, electrical conductivity, carrier concentration, and carrier mobility were characterized. Measurements showed that depending on film thickness. The D.C. conductivity increased with increase in film thickness from 3.720x10-5 (Ω.cm)-1 for 100 nm thickness to 9.442x10-4 (Ω.cm)-1 for 300 nm thicknesses, and the behavior of activation energies, hall mobility, and carrier concentration were also studied.
Optical detector was manufactured Bashaddam thermal evaporation technique at room temperature under pressure rays studied characteristics of reactive Scout efficiency quantitative ratio of the signal and the ability equivalent to noise