Experimental study of heat transfer coefficients in air-liquid-solid fluidized beds were carried out by measuring the heat rate and the overall temperature differences across the heater at different operating conditions. The experiments were carried out in Q.V.F. glass column of 0.22 m inside diameter and 2.25 m height with an axially mounted cylindrical heater of 0.0367 m diameter and 0.5 m height. The fluidizing media were water as a continuous phase and air as a dispersed phase. Low density (Ploymethyl-methacrylate, 3.17 mm size) and high density (Glass beads, 2.31 mm size) particles were used as solid phase. The bed temperature profiles were measured axially and radially in the bed for different positions. Thermocouples were connected to an interface system and these measurements were monitored by computer on line. Theoretical analysis has been carried out to solve the differential equation governing heat transfer in the gas-liquid-solid fluidized system with its boundary conditions. Finite difference technique was used as a suitable numerical method to find the solution. By applying the temperature profiles found experimentally in solved equation, effective thermal conductivity values were found.
This work is concerned with the design and performance evaluation of a shell and double concentric tubes heat exchanger using Solid Works and ANSY (Computational Fluid Dynamics).
Computational fluid dynamics technique which is a computer-based analysis is used to simulate the heat exchanger involving fluid flow, heat transfer. CFD resolve the entire heat exchanger in discrete elements to find: (1) the temperature gradients, (2) pressure distribution, and (3) velocity vectors. The RNG k-ε model of turbulence is used to determining the accurate results from CFD.
The heat exchanger design for this work consisted of a shell and eight double concentric tubes. The number of inlets are three and that of o
... Show MoreDue to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi
... Show MoreSurge pressure is supplemental pressure because of the movement of the pipes downward and the swab pressure is the pressure reduction as a result of the drill string's upward movement. Bottom hole pressure is reduced because of swabbing influence. An Investigation showed that the surge pressure has great importance for the circulation loss problem produced by unstable processes in the management pressure drilling (MPD) actions. Through Trip Margin there is an increase in the hydrostatic pressure of mud that compensates for the reduction of bottom pressure due to stop pumping and/or swabbing effect while pulling the pipe out of the hole. This overview shows suggested mathematical/numerical models for simulating surge pressure problems ins
... Show MoreMass transfer was studied using a rotating cylinder electrode with different lengths of legs acting as turbulence promoters. Two types of rotating cylinder ,made of brass, were examined : an enhanced cylinder one, with four rectangular extensions 10 mm long, 10 mm wide, and 1mm thick, and an enhanced cylinder two with four longitudes 30 mm long,10 mm wide, and 1mm thick. The best performance was obtained for enhanced cylinder two at low rotation speeds while enhanced cylinder one was realized at high rotation speeds. The mass transfer enhancement as compared with a normal rotating cylinder electrode, devoid of promoters, is 53% or 58% higher. The enhancement percentage decreased as rotation speeds increased further, since, seemingly, ful
... Show MoreSome biological aspects of the zebra mussel, Dreissena polymorpha have been studied at Al-Musayab thermal power plant ,sixty km. south west of Baghdad. Data collected during the period extended from November, 2002 to October, 2003 except for the month of April The population consisted of five age groups; O, I, II, III, and IV which have 0, 1, 2, 3 and 4 annuli respectively. The study also proved the validity of annuli readings for age and growth determination. The average annual growth rates for age groups O,I, II, III, and IV were 5.7, 5.5, 5.4, 5.2 and 5.4 respectively. Average calculated length for laboratory reared mussel was 2.5 mm compared to 5.4 mm in natural environment. Correlation coefficients were very high between age an
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show More