Phosphorus is usually the limiting nutrient for eutrophication in inland receiving waters; therefore, phosphorus concentrations must be controlled. In the present study, a series of jar test was conducted to evaluate the optimum pH, dosage and performance parameters for coagulants alum and calcium chloride. Phosphorus removal by alum was found to be highly pH dependent with an optimum pH of 5.7-6. At this pH an alum dosage of 80 mg/l removed 83 % of the total phosphorus. Better removal was achieved when the solution was buffered at pH = 6. Phosphorus removal was not affected by varying the slow mixing period; this is due to the fact that the reaction is relatively fast.
The dosage of calcium chloride and pH of solution play an important role in phosphorus removal. The removal efficiency increases with increasing pH, and the optimum dosage of CaCl2 was 60 mg/l. Alum demonstrated much better results in phosphorus removal than CaCl2.
Mandali Basin is located between latitudes (33◦ 39' 00" and 33◦
54' 55") to the north and longitudes (45ο 11' 00" and 45ο 40' 00") to the
east; to the east of Diyala province at the Iraqi-Iranian border; the
basin area is approximately 491 km2.
From the study of climate reality of the basin between 1990-
2013and assessment of the basic climate transactions, it was found
that the annual rate of rainfall is 253.02 mm, the relative humidity
(44.4%), the temperature (21.3 ◦C), wind speed (2.08 m /sec.),
sunshine (8.27 h/day) and evaporation of the basin class (a) (271.98
mm) and corrected potential evapotranspiration (80.03 mm). The
results of the data analysis show that, there are
Well-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
The addition of new reactive sites on the surface area of the inert sand, which are represented by layered double hydroxide nanoparticles, is the primary goal of this work, which aims to transform the sand into a reactive material. Cetyltrimethylammonium bromide (CTAB) surfactant is used in the reaction of calcium extracted from solid waste-chicken eggshells with aluminum prepared from the cheapest coagulant-alum. By separating amoxicillin from wastewater, the performance of coated sand named as "sand coated with (Ca/Al-CTAB)-LDH" was evaluated. Measurements demonstrated that pH of 12 from 8, 9, 10, 11, and 12, CTAB dosage of 0.05 g from 0, 0.03, 0.05, and 0.1 g, ratio of Ca/Al of 2 from 1, 2, 3, and 4, and mass of sand of 1 g/50 mL from
... Show MoreCarbon dioxide (CO2) flooding is an EOR technique in which carbon dioxide is injected into the reservoir to improve the oil recovery. The reservoir oil and rock properties are altered when carbon dioxide interacts with the oil and rock present in the reservoir. Carbon dioxide injection alters the oil and rock properties by causing reduction in oil viscosity, oil swelling and wettability alteration of the rock. This paper will present a proposal to study the wettability alteration in carbonate formations during miscible carbon dioxide flooding. In miscible carbon dioxide flooding, the injection pressure of carbon dioxide would be kept above the minimum miscibility pressure. Thus carbon dioxide is miscible with the oil present in the reservoi
... Show MoreThe aim of this research is to benefit from recycl the aircraft waste oils which is discarded in sewage network, to be used in preparation of greases for industrial purposes and to reduce the environmental pollution. In this research synthetic greases were prepared with special specifications by mixing the waste oils after treating with (silica gel as adsorbent agent, and filtration to precipitate impurities then heated to 110 C? to get rid of water) bentonite produced in Iraq which is available and cheap with existence of high density polyethylene at specific conditions of ( heating and mixing) . The best weight proportion were reached, then paraffin wax and additives were added to improve the properties of grease and give the
... Show MoreThis study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d o
... Show MoreFormation of Au–Ag–Cu ternary alloy nanoparticles (NPs) is of particular interest because this trimetallic system have miscible (Au–Ag and Au–Cu) and immiscible (Ag– Cu) system. So there is a possibility of phase segregation in this ternary system. At this challenge it was present attempts synthetic technique to generate such trimetallic alloy nanoparticles by exploding wire technique. The importance of preparing nanoparticles alloys in distilled water and in this technique makes the possibility of obtaining nanoparticles free of any additional chemical substance and makes it possible to be used in the treatment of cancer or diseases resulting from bacterial or virus with least toxic. In this work, three metals alloys Au-Ag-Cu
... Show MoreWater absorbent polymers (WAP) are new component in producing building materials. They provide internal curing which reduces autogenous cracking, eliminates autogenous shrinkage, mortar strength increased, enhance early age strength to withstand strain, improve the durability, introduce higher early age compressive strength, have higher performance and reduce the effect of insufficient external curing. This research used different percent of polymer balls to choose the percent that provides good development in compressive strength with time for both water and air curing. The water absorption polymer balls in this research have the ability to absorb water and after usage in concrete they spill out the water (internal curing) and shri
... Show More