A common field development task is the object of the present research by specifying the best location of new horizontal re-entry wells within AB unit of South Rumaila Oil Field. One of the key parameters in the success of a new well is the well location in the reservoir, especially when there are several wells are planned to be drilled from the existing wells. This paper demonstrates an application of neural network with reservoir simulation technique as decision tool. A fully trained predictive artificial feed forward neural network (FFNNW) with efficient selection of horizontal re-entry wells location in AB unit has been carried out with maintaining a reasonable accuracy. Sets of available input data were collected from the exploited grids and used in the training and testing of the used network. A comparison between the calculated and observed cumulative oil production has been carried out through the testing steps of the constructed ANN, an absolute average percentage error of the used network was reached to 4.044%, and this is consider to be an acceptable limit within engineering applications, in addition to that, a good behavior was reached with (FFNNW) and suitable re-entry wells location were identified according to the reservoir configuration (pressure and saturation distribution) output from SRF simulation model at the end of 2005.
Abstract
The study aims to know the degree of secondary school managers' practice of servant leadership in Gaza from their teachers’ perspective. It further aims to examine whether there are any statistically significant differences at (α 0.05≥) between the means of the study sample’s members attributed to variables such as (gender, educational qualification, and years of experience). To achieve the objectives of the study, the study adopted the descriptive survey method, using a questionnaire consisting of (30) items distributed to four domains: (workers service, ethical dealing, motivation & influence, and building an organized, integrated society). Then, the questionnaire was distributed to t
... Show MoreThis study included isolation and characterization of extremely halophilic bacteria from Al-Massab Al-Aam region in South of Iraq Fifty isolates were identified by using numerical taxonomy 40 strains belonged to the genus Halobacterium which inclucted Hb. halobium Hb. cutirubrum Hb. salinarium Hb. saccharovorum Hb. valismortis and Hb. volcanii. Ten strains belonged to the genus Halococcus which included Hc. morrhuae Hc. saccharolyticus. Growth curves were sensitive mutants determined for wild type and salt Generation time in logarthmic phase was measured and found to be (10.37 2hr 7 0.59) for Hb. salinarium / 18 (6.490 hr 0.24) for Hb. cutirubrum / 32, (6.700 hr + 0.488) for Hb. valismortis / 20, (11.243 hr + 0.96) for Hb. volcanii / 7. (7
... Show MoreThe speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T
In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show MoreA new series of chalcone derivatives featuring an oxadiazole-quinoline moiety were successfully synthesized through a multi-step reaction sequence, commencing with quinoline-2-carboxylic acid as the starting material. First, the carboxylic group was chlorinated to form an acid chloride, following reacted with hydrazine hydrate. The resulting product underwent cyclization with carbon disulfide in an alkaline solution to produce 5-(quinolin-2-yl)-1,3,4-oxadiazole-2-thiol, followed by alkylation using chloroacetone. In the final step, an aldol condensation reaction was carried out by grinding the acetone derivative with various aromatic aldehydes, yielding the desired chalcones. The synthesized compounds were characterized by Rf, FTIR,
... Show MorePassive optical network (PON) is a point to multipoint, bidirectional, high rate optical network for data communication. Different standards of PONs are being implemented, first of all PON was ATM PON (APON) which evolved in Broadband PON (BPON). The two major types are Ethernet PON (EPON) and Gigabit passive optical network (GPON). PON with these different standards is called xPON. To have an efficient performance for the last two standards of PON, some important issues will considered. In our work we will integrate a network with different queuing models such M/M/1 and M/M/m model. After analyzing IPACT as a DBA scheme for this integrated network, we modulate cycle time, traffic load, throughput, utilization and overall delay
... Show More