A common field development task is the object of the present research by specifying the best location of new horizontal re-entry wells within AB unit of South Rumaila Oil Field. One of the key parameters in the success of a new well is the well location in the reservoir, especially when there are several wells are planned to be drilled from the existing wells. This paper demonstrates an application of neural network with reservoir simulation technique as decision tool. A fully trained predictive artificial feed forward neural network (FFNNW) with efficient selection of horizontal re-entry wells location in AB unit has been carried out with maintaining a reasonable accuracy. Sets of available input data were collected from the exploited grids and used in the training and testing of the used network. A comparison between the calculated and observed cumulative oil production has been carried out through the testing steps of the constructed ANN, an absolute average percentage error of the used network was reached to 4.044%, and this is consider to be an acceptable limit within engineering applications, in addition to that, a good behavior was reached with (FFNNW) and suitable re-entry wells location were identified according to the reservoir configuration (pressure and saturation distribution) output from SRF simulation model at the end of 2005.
The increasing Global Competitive and the continuous improvement in information technology has led the way to the development of the modern systems and using modern techniques. One of these techniques is benchmarking style and Total Quality Management all of them are used to improve the production process and target rid from the losts on the other side.
The Benchmarking style has become a very important for all the industrial systems and the serving systems as well. And an instrument to improve their performance specially those which are suffering from the highness of the costs or waste in time on the other side.
This study aims to depend on virtual Benchmarking style in the eval
... Show MorePetrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly
... Show MoreAs the major role of oil sector in financing and development of Iraqi economy this study tried to research on the factors which influencing the future of oil production in Iraq and for that study addressed the hypothesis (the production and export of crude oil in Iraq , influenced by many factors divided into internal and external factors this factors shared the effect varies in the size of their participation and runs from different sectors economic , political and social , in order to test the study hypothesis study addressed the subject of three axes(an overview of the history and facts of crude oil production in Iraq and factors internal Affecting the future of oil production in Iraq and external factors affecting the future
... Show MoreDrilling with casing (DWC) can be considered as a modern drilling technique in which both of drilling and casing operations done in the same time by using the casing to transfer the hydraulic and mechanical power to the bit instead of traditional drilling string. To overcome oil well control, minimizing the total cost through enhancing drilling efficiency, drilling with casing was proposed as an enabling technology.
Two surface sections (17 1/2 - and 12 1/4- inch) were drilled successfully in Rumaila oil field with casing strings which reached 655m and 1524m measured depths respectively.
By using DWC technique, the total drill/case phase time was reduced up to 20% comparing to conventional
... Show MoreFlow unit and reservoir rock type identification in carbonates are difficult due to the intricacy of pore networks caused by facies changes and diagenetic processes. On the other hand, these classifications of rock type are necessary for understanding a reservoir and predicting its production performance in the face of any activity. The current study focuses on rock type and flow unit classification for the Mishrif reservoir in Iraq's southeast and the study is based on data from five wells that penetrate it. Integration of several methods was used to determine the flow unit based on well log interpretation and petrophysical properties. The flow units were identified using the Quality Index of Rock and the Indicator of Flow Zone. Th
... Show MoreThere are many problems facing the economic entities as a result of its mass production &variation of its products , the matter which had increased the need & importance of cost accounting which is regarded a main tool for the managerial control.
The actual costing system is unable to meet the contemporary management needs ,so the Standard costing system appear to provide the management with required information to perform its functions by the best use& way.
This research aims to determine the standard cost for the direct material for oil extraction activity by applying it in the north oil company.
In this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show More
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show More