Preferred Language
Articles
/
ijcpe-401
Oxidation of Phenolic Wastewater by Fenton's Reagent
...Show More Authors

Phenol oxidation by Fenton's reagent (H2O2 + Fe+2) in aqueous solution has been studied for the purpose of learning
more about the reactions involved and the extent of the oxidation process, under various operating conditions. An initial
phenol concentration of 100 mg/L was used as representative of a phenolic industrial wastewater. Working temperature
of 25C was tested, and initial pH was set at 5.6 . The H2O2 and the Fe+2 doses were varied in the range of
(H2O2/Fe+2/phenol = 3/0.25/1 to 5/0.5/1). Keeping the stirring speed of 200 rpm.
The results exhibit that the highest phenol conversion (100%) was obtained under (H2O/Fe+2/phenol ratio of 5/0.5/1)
at about 180 min. The study has indicated that Fenton's oxidation is first order with respect to the phenol concentration
and the rate constant K, was found to be 0.0325s-1 .

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Engineering
Investigation the Optimum Combined Dosages of Date Seeds Powder as Natural Coagulant with Chemical Coagulants in Domestic Wastewater Pretreatment
...Show More Authors

The pretreatment process can be considered one of the important processes in wastewater treatment, especially coagulation process to decrease the strength of many pollutants. This paper focused on using powdered date seeds as natural coagulant in addition to chemical coagulants (alum and ferric chloride) to find the optimum dosage of each coagulant that makes efficient removal of turbidity and chemical oxygen demand (COD) from domestic wastewater as a pretreatment process, then finding the optimum combined dosages of date seeds with alum, date seeds with ferric chloride that make efficient removal for both pollutants. Concerning turbidity, the optimum dosage for date seeds, alum and ferric chloride were 40 mg/l (79%), 70

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Case Studies In Chemical And Environmental Engineering
Optimization of photocatalytic process with SnO2 catalyst for COD reduction from petroleum refinery wastewater using a slurry bubble photoreactor
...Show More Authors

View Publication
Scopus (3)
Crossref (4)
Scopus Crossref
Publication Date
Sun Jun 01 2025
Journal Name
Chemical Engineering And Processing - Process Intensification
Wastewater treatment through a hybrid electrocoagulation and electro-Fenton process with a porous graphite air-diffusion cathode
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2017
Journal Name
2017 International Conference On Environmental Impacts Of The Oil And Gas Industries: Kurdistan Region Of Iraq As A Case Study (eiogi)
Inverse fluidized bed for chromium ions removal from wastewater and produced water using peanut shells as adsorbent
...Show More Authors

View Publication
Scopus (5)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Chemical Engineering Research And Design
Nickel removal from simulated wastewater using a novel bio-electrochemical cell with packed bed rotating cylinder cathode
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Mar 13 2011
Journal Name
Baghdad Science Journal
Testing the efficiency of duckweed Lemna spp. in reducing the concentration of zinc and iron from the wastewater when increase biomass
...Show More Authors

The study searches for the possibility of using duckweed Lemna spp. to reduce the concentration of heavy metals (zinc and iron) in the wastewater of Baghdad by culturing two different densities of the plant with a fresh weights 5 and 10 g/l and without the plant under optimum uncontrolled conditions. The result showed that there was a significant differences at the possibility level of (p? 0.05) for the three treatments, as the highest percentages for zinc removal in the second day for the plant treatment of 5 g/l were 66.40%, while the highest percentage of iron removal were in the tenth days for the plant treatment 10 g/l were 80 %, and noticed that the increase of the heavy metals concentrations accumulated in the plant after bei

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Asian Journal Of Ournal Of Chemistry
Assessment of an Electrocoagulation Reactor for the Removal of Oil Content and Turbidity from Real Oily Wastewater Using Response Surface Method
...Show More Authors

Background: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi

... Show More
Preview PDF
Crossref (15)
Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Engineering
Ultrafiltration and Reverse Osmosis Membranes for Treating Wastewater Effluent from Gas Turbine Power Plants using the Statistical Method of Taguchi
...Show More Authors

A study on the treatment and reuse of oily wastewater generated from the process of fuel oil treatment of gas turbine power plant was performed. The feasibility of using hollow fiber ultrafiltration (UF) membrane and reverse osmosis (RO) membrane type polyamide thin-film composite in a pilot plant was investigated. Three different variables: pressure (0.5, 1, 1.5 and 2 bars), oil content (10, 20, 30 and 40 ppm), and temperature (15, 20, 30 and 40 ᵒC) were employed in the UF process while TDS was kept constant at 150 ppm. Four different variables: pressure (5, 6, 7 and 8 bar), oil content (2.5, 5, 7.5 and 10 ppm), total dissolved solids (TDS) (100, 200,300 and 400 ppm), and temperature (15, 20, 30 and 40 ᵒC) were mani

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 05 2021
Journal Name
Journal Of Arab Statistical Union (jasu)
Using Quality Control and 6-Sigma to Determine The Quality of The Treated Wastewater Discharged From Some Water Purification Plants
...Show More Authors

Publication Date
Tue Jun 01 2021
Journal Name
Journal Of Engineering
A Comparative Study of a Moving Bed Biofilm Reactor and Bio-shaft Technology for a Wastewater Treatment Process: A review
...Show More Authors

In addition to the primary treatment, biological treatment is used to reduce inorganic and organic components in the wastewater. The separation of biomass from treated wastewater is usually important to meet the effluent disposal requirements, so the MBBR system has been one of the most important modern technologies that use plastic tankers to transport biomass with wastewater, which works in pure biofilm, at low concentrations of suspended solids. However, biological treatment has been developed using the active sludge mixing process with MBBR. Turbo4bio was established as a sustainable and cost-effective solution for wastewater treatment plants in the early 1990s and ran on minimal sludge, and is easy to maintain. This

... Show More
View Publication Preview PDF
Crossref