In the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A comparison with selected correlations in the literature showed that the developed ANN correlation noticeably improved the prediction of bubble sizes. The developed correlation also shows better prediction over a wide range of operation parameters in bubble columns.
Background: The purpose of this study was to evaluate the effect of in vitro long-term simulation of oral conditions on the bond strength of PEEK CAD/CAM lingual retainers.
Material and methods: The sample consisted of 12 PEEK CAD/CAM retainers each composed of 2 centrally perforated 3x4mm pads joined by a connector. They were treated by 98% sulfuric acid for 1 minute and then conditioned with Single Bond Universal and bonded to the lingual surface of premolar teeth by 3M Transbond TM System. Half of the retainers were artificially aged using a 30-day water storage and 5000 thermocycling protocol before bond strength testing to compare with the non-aged specimens.
Results: The artificially aged retainers showed a marginally
... Show MoreThe UN plans to achieve several development objectives by 2030. These objectives address global warming, a major issue. This method aims to improve sustainable accounting performance (AP). In this circumstance, AI is being applied in various fields, notably in economic, social, and environmental (ESE) domains. This research investigates how sustainable development (SD) influences AI methodologies and AP improvement. The research examined a sample of Iraqi banks listed on the Iraq Stock Exchange from 2014 to 2022. AI was measured by ATM and POS prevalence. A three-dimensional approach examined economic, social, and environmental (ESE) sustainability. Meanwhile, the performance of sustainable accounting was measured through the return on asse
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreThis work concerns the thermal and sound insulation as well as the mechanical properties of polymer matrix composite reinforced with glass fibers. These fibers may have dangerous effect during handling, for example the glass fibers might cause some damage to the eyes, lungs and even skin. For this reason the present work, investigates the behavior of polymer composite reinforced with natural fibers (Plant fibers) as replacement to glass fibers. Unsaturated Polyester resin was used as matrix material reinforced with two types of fibers, one of them is artificial (Glass fibers) and the other type is natural (Jute, Fronds Palm and Reed Fibers) by hand lay-up technique. All fibers are untreated with any chemical solvent. The Percentage of mi
... Show MoreThe research topic was chosen as a result of the importance of human resource in business organizations in general and the industrial process in particular. Without the human resource, business organizations cannot continue and achieve success and excellence, and the research problem has been diagnosed in the lack of sales of General Cement Company’s northern products, despite their distinctiveness, standing, and reputation in The market and its products with standard specifications, and through this problem, the following questions were raised: &nbs
... Show MoreIn the present work effect of recycled heating and cooling on the values of concrete compressive strength due to high temperature of 4000C was studied.
The tests show that the percent of reduction in compressive strength of the samples which exposed to a temperature of 4000C for one cycle was 32.5%, while the reduction was 52.7% for the samples which were exposed to recycled heating and cooling of ten times .
Moreover a study of the effect of specimen sizes on the percentages of compressive strength reduction due to high temperature
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
This study aims to simulate and assess the hydraulic characteristics and residual chlorine in the water supply network of a selected area in Al-Najaf City using WaterGEMS software. Field and laboratory work were conducted to measure the pressure heads and velocities, and water was sampled from different sites in the network and then tested to estimate chlorine residual. Records and field measurements were utilized to validate WaterGEMS software. Good agreement was obtained between the observed and predicted values of pressure with RMSE range between 0.09–0.17 and 0.08–0.09 for chlorine residual. The results of the analysis of water distribution systems (WDS) during maximum demand