Feasibility of biosorbent of England bamboo plant origin was tested for removal of priority metal ions such as Cu and Zn from aqueous solutions in single metal state. Batch single metal state experiments were performed to determine the effect of dosage (0.5, 1 and 1.5 g), pH (3, 4, 4.5, 5 and 6), mixing speed (90, 111, 131, 156 and 170 rpm), temperature (20, 25, 30 and 35 °C) and metal ion concentration (10, 50, 70, 90 and 100 mg/L) on the ability of dried biomass to remove metal from solutions which were investigated. Dried powder of bamboo removed (for single metal state) about 74 % Cu and 69% Zn and maximum uptake of Cu and Zn was 7.39 mg/g and 6.96 mg/g respectively, from 100 mg/L of synthetic metal solution in 120 min. of contact time at pH 4.5 and 25°C with continuous stirring at 170 rpm. Experimental results have been analyzed using Langmuir and Freundlich isotherms. Both equilibrium sorption isotherms were found to represent well the measured sorption data, but Freundlich isotherm was better than Langmuir isotherm. The effect of time was studied and the rate of removal of Cu (II) and Zn (II) ions from aqueous solution by bamboo plant was found. The rates of sorption of copper and zinc were rapid initially within 5-15 minutes and reached a maximum in about 60 minutes.
Photovoltaic devices (PVs) were fabricated by spray-coating an ink of copper indium diselenide CuInSeR 2 R(CIS) nanocrystals as the light-absorbing layer. Without high-temperature post-deposition annealing, PVs were made on glass substrates with power conversion efficiencies of up to 1.5% and 0.9%, for Au and Mo coated respectively, under AM 1.5 illumination. UV–Vis spectrophotometer in the wavelength range 350–1500 nm. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis it is evident that CuInSeR 2 R have the chalcopyrite structure as the major phase and no secondary phase with a preferred orientation along (112) direction and The atomic ratio of Cu : In : Se in the nanocrystals is nearly 1 : 1 : 2.
Nanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were c
... Show MoreThe kinetics of nickel removal from aqueous solutions using a bio-electrochemical reactor with a packed bed rotating cylinder cathode was investigated. The effects of applied voltage, initial nickel concentration, the rotation speed of the cathode, and pH on the reaction rate constant (k) were studied. The results showed that the cathodic deposition occurred under mass transfer control for all values of the applied voltage used in this research. Accordingly, the relationship between concentration and time can be represented by a first-order equation. The rate constant was found to be dependent on the applied voltage, initial nickel concentration, pH, and rotation speed. It was increased as the applied voltage increased and decreased as t
... Show MoreThis paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
Background: Decontamination of gutta percha cones was important factor for success of root canal treatment. The aim of the present in vitro study was to identify and to compare the antimicrobial effect of following disinfection solutions: 0.2% chlorhexidine gluconate, Iodine, tetracycline hydrochloride solution, EDTA & formocresol mixed with zinc oxide eugenol, on E faecalis, E coli and Candida albicans using sensitivity test Materials and Methods: Three types of microorganisms were isolated from infected root canals (E faecalis, E coli and Candida albicans) and cultured on Mueller Hinton agar petri-dishes. Disinfection of gutta percha cones done by immersion in six disinfection solutions (six groups), the groups are: distill water (used a
... Show MoreIn this work, the adsorption of reactive yellow dye (Remazol yellow FG dye) by granular activated carbon (GAC) was investigated using batch and continuous process. The batch process involved determination the equilibrium isotherm curve either favorable or unfavorable by estimation relation between adsorption capacity and concentration of dye at different dosage of activated carbon. The results were fitted with equilibrium isotherm models Langmuir and Freundlich models with R2value (>0.97). Batch Kinetic study showed good fitting with pseudo second order model with R2 (0.987) at contact time 5 h. which provesthat the adsorption is chemisorptions nature. Continuous study was done by fixed bed column where breakthrough time was increased
... Show Morein this paper the second order neutral differential equations are incestigated are were we give some new suffucient conditions for all nonoscillatory
Groundwater can be assessed by studying water wells. This study was conducted in Al-Wafa District, Anbar Governorate, Iraq. The water samples were collected from 24 different wells in the study area, in January 2021. A laboratory examination of the samples was conducted. Geographical information systems technique was relied on to determine the values of polluting elements in the wells. The chemical elements that were measured were [cadmium, lead, cobalt and chromium]. The output of this research were planned to be spatial maps that show the distribution of the elements with respect to their concentrations. The results show a variation in the heavy elements concentrations at the studied area groundwater. The samples show different values
... Show More