Feasibility of biosorbent of England bamboo plant origin was tested for removal of priority metal ions such as Cu and Zn from aqueous solutions in single metal state. Batch single metal state experiments were performed to determine the effect of dosage (0.5, 1 and 1.5 g), pH (3, 4, 4.5, 5 and 6), mixing speed (90, 111, 131, 156 and 170 rpm), temperature (20, 25, 30 and 35 °C) and metal ion concentration (10, 50, 70, 90 and 100 mg/L) on the ability of dried biomass to remove metal from solutions which were investigated. Dried powder of bamboo removed (for single metal state) about 74 % Cu and 69% Zn and maximum uptake of Cu and Zn was 7.39 mg/g and 6.96 mg/g respectively, from 100 mg/L of synthetic metal solution in 120 min. of contact time at pH 4.5 and 25°C with continuous stirring at 170 rpm. Experimental results have been analyzed using Langmuir and Freundlich isotherms. Both equilibrium sorption isotherms were found to represent well the measured sorption data, but Freundlich isotherm was better than Langmuir isotherm. The effect of time was studied and the rate of removal of Cu (II) and Zn (II) ions from aqueous solution by bamboo plant was found. The rates of sorption of copper and zinc were rapid initially within 5-15 minutes and reached a maximum in about 60 minutes.
This study aims to remove Cd(II) ions from simulated wastewater by using Chlorophyceae algae (CA). Different parameters were studied to show their effects on the biosorption efficiency of CA. These parameters are: the effect of pH 3-7, initial metal ion concentration 20-200 mg/L, sorbent dos-age 0.05-2 g/L, contact time 5-180 min, and agitation speed 100-300 rpm. We found that both the Langmuir and Freundlich models appropriate for characterizing the metal removal process. The biosorption data fit best with the results of the pseudo-second-order kinetic model, demonstrating that the chemisorption process is the dominant mechanism controlling the removal. CA was char-acterized using the scanning electron microscopy test, prior to and post bi
... Show MoreThe study of the distribution of major oxides and heavy metals in some plants collecting and analyzing eighteen plant samples of vegetables including carrot, onion, eggplant, cucumber, and okra obtained from Abu Ghraib land located about 20 km west of Baghdad, Iraq. Eighteen plant samples of vegetables,.Heavy metals can have a severe impact if released into the environment, even in trace quantities. These can enter the food chain from aquatic and agricultural ecosystems and indirectly threaten human health.. Trace elements and oxides of As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Se, Th, U, V, and Zn were measured in plant samples using an X-Ray Fluorescence Instrument (XRF). TEs analyses of vegetables were performed in the Iraqi German Lab
... Show MoreThis study was conducted from February 2010 to December 2010. Water Samples were collected every two months in three stations in Baghdad city. The study involved the assessment of concentrations of some heavy metals such as: Chromium, Cadmium, Copper, Iron, Lead, Manganese, Nickel and Zinc. the values of chromium were undetected for the entire of the study, while the rest of the heavy metal were ranged between 0.001 -0.438 mg / l, ND -0.077 mg / L, ND -0.778 mg / l, 0.36 - 0.011 mg / l, 0.011-0 .08mg/ l, ND - 0.1985 mg / l, ND -0.0416 mg / l, respectively. The results showed that the concentrations of heavy metals were fluctuated during the study period, except Lead which have high concentrations and exceeded the permit limits in all statio
... Show MoreIn this study involves removing of Brilliant Dyes, were which (Brilliant Green {BG} and Brilliant Cresyl Blue {BCB}) by using Iraqi Siliceous Rocks Powder (SRP). Adsorption isotherms were studied and the factors which prefer it, like temperature and salt effect, Adsorption isotherms of dyes, Brilliant Cresyl Blue {BCB} was found to be comparable to Langmuir equation according to Giles classification, isotherms dye Brilliant Green {BG} was found to be comparable to Freundlich equation more than dye Brilliant Blue {BCB} according to Giles classification. The adsorption process on this surface (SRP) studied at different temperatures, the results showed that the adsorption of dyes (BCB, BG) on the surface increased with increased temperature (E
... Show MoreThis study utilized low-cost agricultural waste (molasses production waste powder) to extract copper ions from aqueous solutions. The present investigation explored a range of factors that influence the adsorption process, including temperature, pH, ionic strength, contact time, quantity of adsorbent, and particle size. Spectrophotometric analysis was used to determine the solution's absorbance both before and after the adsorption procedure. The Langmuir and Freundlich adsorption models were used to match the equilibrium data. The Freundlich model was determined to be the best isotherm model using the linear regression coefficient R2=0.9868. Thermodynamic parameters, including enthalpy, entropy, and Gibbs free energy, were calculate
... Show MoreBiosorpion of lead (Pb), Cadmium (Cd) and Nickl(Ni) by dried biomass of Chara sp. for sample of BMP was used as alternative approach of conventional method. The range of removal percentages was between 92-97%, 70-98.7% and 46.6-96.6% for Pb, Cd and Ni respectively at 3h.Treatment time, with 300-500 mg dried weight from Chara sp. powder at pH 4, with 60 rpm at shaker. FTIR analysis showed the active groups which are responsible for sequestration of heavy metals represented by carboxyl, hydroxyl alkyl, amine and amide. The Biosorption equilibrium experiment for elements showed that the highest sorption percentage for three elements was, Pb 96.6% after 30 minute, for Cd was 100% after 15 minute and 40% to Ni after 75 minute, while the biosorp
... Show MoreSoil is a crucial component of environment. Total soil analysis may give information about possible enrichment of the soil with heavy metals. Heavy metals, potentially contaminate soils, may have been dumped on the ground. chromium, nickel and cadmium,
The Tigris River is a major source of Iraq’s drinking and agricultural water supply. An increase in pollution by heavy metals can be a great threat to human and aquatic life. In this study, the pollution index (PI) and metal index (MI) were used to evaluate the status of the Tigris River in Baghdad City. Five stations were chosen to conduct the study. Five heavy metals were analyzed: iron (Fe), lead (Pb), nickel (Ni), zinc (Zn), and chromium (Cr). The result of PI was ranked between “No effect to moderately affected for Fe; Slightly Affected to Seriously Affected for Pb; no effect to moderately affected for Ni, and no effect to strongly affected for Cr; only Zn was in the No effec