In this work, a numerical study is performed to predict the solution of two – dimensional, steady and laminar mixed convection flow over a square cylinder placed symmetrically in a vertical parallel plate. A finite difference method is employed to solve the governing differential equations, continuity, momentum, and energy equation balances. The solution is obtained for stream function, vorticity and temperature as dependent variables by iterative technique known as successive over relaxation. The flow and temperature patterns are obtained for Reynolds number and Grashof number at (Re= -50,50,100,-100) (positive or negative value refers to aidding or opposing buoyancy , +1 assisting flow, -1 opposing flow) and (102 to 105) , respectively. The results displaced that the recirculation length above the cylinder increases with the increase in Gr number and the average Nu number is the highest at the lower surface of the cylinder, while is the lowest at the top of the cylinder surface. A comparison between the obtained results and the published computational studies has been made and it showed a good agreement.
The aim of our study is to solve a nonlinear epidemic model, which is the COVID-19 epidemic model in Iraq, through the application of initial value problems in the current study. The model has been presented as a system of ordinary differential equations that has parameters that change with time. Two numerical simulation methods are proposed to solve this model as suitable methods for solving systems whose coefficients change over time. These methods are the Mean Monte Carlo Runge-Kutta method (MMC_RK) and the Mean Latin Hypercube Runge-Kutta method (MLH_RK). The results of numerical simulation methods are compared with the results of the numerical Runge-Kutta 4th order method (RK4) from 2021 to 2025 using the absolute error, which prove
... Show MoreThis paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
ABSTRACT Fifty extremely halophilic bacteria were isolated from local high salient soils named Al-Massab Al-Aam in south of iraq and were identified by using numerical taxonomy. Fourty strains were belong to the genus Halobacterium which included Hb. halobium (10%). Hb. salinarium (12.5%), Hb.cutirubrum (17.5%), Hb-saccharovorum (12.5%), Hb. valismortis (10%) and Hb. volcanii (37.5%). Growth curves were determined. Generation time (hr) in complex media and logarithmic phase were measured and found to be 10.37±0.59 for Hb. salinarium. 6.49 ± 0.24 for Hb.cutirubrum. 6.70±0.48 for Hb-valismonis, and 11.24 ± 0.96 for Hb. volcanii
The problem of water scarcity is becoming common in many parts of the world, to overcome part of this problem proper management of water and an efficient irrigation system are needed. Irrigation with a buried vertical ceramic pipe is known as a very effective in the management of irrigation water. The two- dimensional transient flow of water from a buried vertical ceramic pipe through homogenous porous media is simulated numerically using the HYDRUS/2D software. Different values of pipe lengths and hydraulic conductivity were selected. In addition, different values of initial volumetric soil water content were assumed in this simulation as initial conditions. Different value
... Show MoreIn this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show MoreThe effect of air injection device on the performance of airlift pump used for water pumping has been studied numerically and experimentally. An airlift pump of dimensions 42mm diameter and 2200 mm length with conventional and modified air injection device was considered. A modification on conventional injection device (normal air-jacket type) was carried out by changing injection angle from 90 (for conventional) to 22.5 (for modified). Continuity and Navier-Stokes equations in turbulent regime with an appropriate two-phase flow model (VOF) and turbulent model ( ) in two dimensions axisymmetry flow were formulated and solved by using the known package FLUENT version (14.5). The numerical and experimental investiga
... Show MoreThe investigation of natural convection in an annular space between two concentric cylinders partially filled with metal foam is introduced numerically. The metal foam is inserted with a new suggested design that includes the distribution of metal foam in the annular space, not only in the redial direction, but also with the angular direction. Temperatures of inner and outer cylinders are maintained at constant value in which inner cylinder temperature is higher than the outer one. Naiver Stokes equation with Boussinesq approximation is used for fluid regime while Brinkman-Forchheimer Darcy model used for metal foam. In addition, the local thermal equilibrium condition in the energy e
The rotor dynamics generally deals with vibration of rotating structures. For designing rotors of a high speeds, basically its important to take into account the rotor dynamics characteristics. The modeling features for rotor and bearings support flexibility are described in this paper, by taking these characteristics of rotor dynamics features into standard Finite Element Approach (FEA) model. Transient and harmonic analysis procedures have been found by ANSYS, the idea has been presented to deal with critical speed calculation. This papers shows how elements BEAM188 and COMBI214 are used to represent the shaft and bearings, the dynamic stiffness and damping coefficients of journal bearings as a matrices have been found
... Show More