In the present study, the removal of zinc from synthetic waste water using emulsion liquid membrane extraction technique was investigated. Synthetic surfactant solution is used as the emulsifying agent. Diphenylthiocarbazon (ditizone) was used as the extracting agent dissolved in carbon tetrachloride as the organic solvent and sulfuric acid is used as the stripping agent. The parameters that influence the extraction percentage of Zn+2 were studied. These are the ratio of volume of organic solvent to volume of aqueous feed (0.5-4), ratio of volume of surfactant solution to volume of aqueous feed (0.2-1.6), pH of the aqueous feed solution (5-10), mixing intensity (100-1000) rpm, concentration of extracting agent (20-400) ppm, surfactant concentration (0.2-2) wt.%, contact time (3-30) min, and concentration of strip phase (0.25-2) M . It was found that 87.4% of Zn+2 can be removed from the aqueous feed solution at the optimum operating conditions. Further studies were carried out on extraction percentages of other toxic metal ions (As+3, Hg+2, Pb+2, Cd+2) by using the same optimum conditions which were obtained for zinc ions except for the pH of the feed solutions. The pH values for best extraction percentages of arsenic, lead, and cadmium were (1, 10, 10) respectively. Maximum extraction percentage of (98.5, 95.5 and 93.8) was obtained for arsenic, lead, and cadmium respectively, while mercury was completely removed from the aqueous feed solution within the acidic pH range.
to study the discribrion and the pollution in the environment in the south of baghdad samples of waste water from industrail units using the mercury in its process also
This investigation is a study of the length of time where drops can exist at an oil-water interface before coalescence take place with a bulk of the same phase as the drops. Many factors affecting the time of coalescence were studied in is investigation which included: dispersed phase flow rate, continuous phase height, hole size in distributor, density difference between phases, and viscosity ratio of oil/water systems, employing three liquid/liquid systems; kerosene/water, gasoil/water, and hexane/water. Higher value of coalescence time was 8.26 s at 0.7ml/ s flow rate, 30cm height and 7mm diameter of hole for gas oil/water system, and lower value was 0.5s at 0.3ml/s flow rate, 10 cm height and 3mm diameter of hole for hexane
... Show MorePulsed laser ablation in liquid (PLAL) has become an increasingly important technique for metals production and metal oxides nanoparticles (NPs) and others. This technique has its many advantages compared with other conventional techniques (physical and chemical). This work was devoted for production of zirconia (ZrO2) nanoparticles via PLAL technique from a solid zirconium target immersed in a wet environment in order to study the effect of this environment on the optical properties and structure of ZrO2 nanoparticles. The solutions which used for this purpose is distilled water (D.W). The produces NPs were characterized by mean of many tests such as UV-visible (UV-Vis.), transmission electron microscope (TEM) and Z-Potential. The UV-Vis.
... Show MoreSub-threshold operation has received a lot of attention in limited performance applications.However, energy optimization of sub-threshold circuits should be performed with the concern of the performance limitation of such circuit. In this paper, a dual size design is proposed for energy minimization of sub-threshold CMOS circuits. The optimal downsizing factor is determined and assigned for some gates on the off-critical paths to minimize the energy at the maximum allowable performance. This assignment is performed using the proposed slack based genetic algorithm which is a heuristic-mixed evolutionary algorithm. Some gates are heuristically assigned to the original and the downsized design based on their slack time determined by static tim
... Show MoreMembrane manufacturing system was operated using dry/wet phase inversion process. A sample of hollow fiber membrane was prepared using (17% wt PVC) polyvinyl chloride as membrane material and N, N Dimethylacetamide (DMAC) as solvent in the first run and the second run was made using (DMAC/Acetone) of ratio 3.4 w/w. Scanning electron microscope (SEM) was used to predict the structure and dimensions of hollow fiber membranes prepared. The ultrafiltration experiments were performed using soluble polymeric solute poly ethylene glycol (PEG) of molecular weight (20000 Dalton) 800 ppm solution 25 °C temperature and 1 bar pressure. The experimental results show that pure water permeation increased from 25.7 to 32.2 (L/m2.h.bar) by adding aceton
... Show MoreMany nations are seeing an increase in water pollution from dairy and cheese production due to the high organic and fat content in their waste products and the high temperature of their waste products, which elevates the water temperature and causes loss to ecosystem components. Reusing industrial wastewater that has been treated to guarantee no harm has been done to the environment is being hampered by a lack of water. This study compares the presence and absence of mixing in the anaerobic biological treatment of liquid waste for the cheese industry. To decrease heat exchange with the external environment, cube-shaped anaerobic reactors with dimensions of (30 x 30 x 30) cm and thick glass (10 mm) were utilized in this investigation
... Show MoreIn this work, a method for the simultaneous spectrophotometric determination of zinc which was precipitated into deionized water that is in a commercial distribution systems PVC pipe, is proposed using UV-VIS Spectrophotometer. The method based on the reaction between the analytes Zn2+ and 2-carboxy-2-hyroxy-5-sulfoformazylbenze (Zincon) at an absorption maximum of 620nm at pH 9-10. This ligand is selective reagent. Since the complex is colored (blue), its stoichiometry can be established using visible spectrometry to measure the absorbance of solutions of known composition. The stoichiometry of the complex was determined by Job’s method and molar ratio method and found to be 1:2 (M: L). A series of synthetic solution containing different
... Show MoreThe fall angle of sun rays on the surface of a photovoltaic PV panel and its temperature is negatively affecting the panel electrical energy produced and efficiency. The fall angle problem was commonly solved by using a dual-axis solar tracker that continually maintains the panel orthogonally positioning to the sun rays all day long. This leads to maximum absorption for solar radiation necessary to produce maximum amount of energy and maintain high level of electrical efficiency. To solve the PV panel temperature problem, a Water-Flow Double Glazing WFDG technique has been introduced as a new cooling tool to reduce the panel temperature. In this paper, an integration design of the water glazing system with a dual-axis tracker has been ac
... Show More