Spent hydrodesulfurization (Co-Mo/γ-Al2O3) catalyst generally contains valuable metals like molybdenum (Mo), cobalt (Co), aluminium (Al) on a supporting material, such as γ-Al2O3. In the present study, a two stages alkali/acid leaching process was conducted to study leaching of cobalt, molybdenum and aluminium from Co-Mo/γ-Al2O3 catalyst. The acid leaching of spent catalyst, previously treated by alkali solution to remove molybdenum, yielded a solution rich in cobalt and aluminium.
In this study, four sampling stations were selected on the Tigris River (Baghdad region) in order to determine concentrations, seasonal variation and pollution intensity assessment of heavy metals (Cd, Zn and Mn) in water, sediments and Barbus xanthpterus fish in this river. The study results showed that the mean concentration of dissolved heavy metals (cadmium, zinc and manganese) were 0.004 ppm, 0.023 ppm and 0.007 ppm, respectively. Whereas, their concentrations in sediments were 1.38 ppm, 86 ppm and 231.4 ppm respectively. Irregular seasonal variation for concentrations of these metals in both sediments and water. The mean concentration of these metals in tissues of fish muscles were 0.0043 ppm, 0.0023 ppm and 0.03 ppm for cadmium, z
... Show MoreAbstract. Al-Abbawy DAH, Al-Thahaibawi BMH, Al-Mayaly IKA, Younis KH. 2021. Assessment of some heavy metals in various aquatic plants of Al-Hawizeh Marsh, southern of Iraq. Biodiversitas 22: 338-345. In order to describe the degree of contamination of aquatic environments in Iraq, heavy metals analysis (Fe, Ni, Cr, Cd, Pb, and Zn) was conducted for six aquatic macrophytes from different locations of Al-Hawizeh Marsh in southern Iraq. The six species were Azolla filiculoides (floating plant), Ceratophyllum demersum, Potamogeton pectinatus, Najas marina (submerged plants), Phragmites australis, and Typha domingensis (emergent plants). The results indicate that cadmium, chromium, and iron concentrations in aquatic plants were above the
... Show MoreThe cathodic deposition of zinc from simulated chloride wastewater was used to characterize the mass transport properties of a flow-by fixed bed electrochemical reactor composed of vertical stack of stainless steel nets, operated in batch-recycle mode. The electrochemical reactor employed potential value in such a way that the zinc reduction occurred under mass transport control. This potential was determined by hydrodynamic voltammetry using a borate/chloride solution as supporting electrolyte on stainless steel rotating disc electrode. The results indicate that mass transfer coefficient (Km) increases with increasing of flow rate (Q) where .The electrochemical reactor proved to be efficient in removing zinc and was abl
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreLiquid-Liquid Extraction of Cu(II) ion in aqueous solution by dicyclohexyl-18-crown-6 as extractant in dichloroethane was studied .The extraction efficiency was investigated by a spectrophometric method. The reagent form a coloured complex which has been a quantitatively extracted at pH 6.3. The method obeys Beer`s law over range from (2.5-22.5) ppm with the correlation coefficient of 0.9989. The molar absorptivity the stoichiometry of extracted complex is found to be 1:2. the proposed method is very sensitive and selective.
In the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreOil from Brassca campestris (local variety) was extracted with hexane using Soxhlet. The extracted oil was characterized and its antimicrobial activity was determined as well. The content of extracted oil was 40% with 0.5% of volatile oil .Oil was immiscible with polar solvent such as ethanol, acetone and water, while it was easily miscible with chloroform due to its hydrophobicity. The result of organoleptic tests revealed that the oil is clear yellow in color and odorless with acceptable taste. The oil was stable at 4 -25 C? for a month. Refractive index (RI) of oil was 1.4723 with density of 0.914, [both at 4-25 C?]. Boiling point 386 C?. Infra red spectroscopy (IR) indicated the presence of different chemical groups (C=C
... Show More