An experimental and numerical study was carried out to investigate the heat transfer by natural convection in a three dimensional annulus enclosure filled with porous media (silica sand) between two inclined concentric cylinders with (and without) annular fins attached to the inner cylinder under steady state condition. The experiments were carried out for a range of modified Rayleigh number (0.2 ≤Ra*≤ 11) and extended to Ra*=500 for numerical study and for annulus inclination angle of (δ = 0˚, 30˚, 60˚ and 90˚). The numerical study was to give the governing equation under assumptions that used Darcy law and Boussinesq’s approximation and then it was solved numerically using finite difference approximation. It was found that the average Nusselt number depends on (Ra*, Hf, δ and Rr ). The results showed that the increasing of the fin length increases the heat transfer rate for any fin pitch unless the area of the inner cylinder exceeds that of the outer one; then the heat will be stored in the porous media. A comparison was made between the results of the present work and those of other researches for the case without fins and excellent agreement was obtained.
Three-dimensional cavity was investigated numerical in the current study filled with porous medium from a saturated fluid. The problem configuration consists of two insulated bottom and right wall and left vertical wall maintained at constant temperatures at variable locations, using two discretized heaters. The porous cavity fluid motion was represented by the momentum equation generalized model. The present investigation thermophysical parameters included the local thermal equilibrium condition. The isotherms and streamlines was used to examine energy transport and momentum. The meaning of changing parameters on the established average Nusselt number, temperature and velocity distribution are highlighted and discussed.
A simplified parallel key was presented in this work for the Taxa of Stackys L. wildly grown in Iraq. Three records within this genus were newly recorded to our country in the present work and they are S. kermanshahansis Rech S. setifera C.A. Mey. subsp setifera, S. setifera ssp iranica (Reck.) The characteristics of these new records were also given with some representative specimens.
Nanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). D
... Show MoreThis paper reports an experimental study regarding the influence of vertical oscillations on the natural convection heat transfer from a vertical channel. An experimental set-up was constructed and calibrated; the vertical channel was tested in atmosphere at 25o
C. The channel-to-ambient temperature difference was varied with the power supply to the electrical heater ranging between
15W to 70W divided into five levels. Data sets were measured under different operating condition from a test rig under six vibrating velocities (VVs) levels ranging from (5-30 m/s) in addition to the stationary state. The results show that the maximum heat transfer enhancement factor (E) occurs at Rayleigh number (Ra=2.328×103 ) and vibrational Reynol
In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p
... Show MoreThe present work describes numerical and experimental investigation of the heat transfer characteristics in a plate-fin, having built-in piezoelectric actuator mounted on the base plate (substrate). The geometrical configuration considered in the present work is representative of a single element of the plate-fin and triple fins. Air is taken as the working fluid. A performance data for a single rectangular fin and triple fins are provided for different frequency levels (5, 30 and
50HZ) , different input power (5,10,20,30,40 and 50W) and different inlet velocity (0.5, 1, 2, 3, 4, 5 and 6m/s) for the single rectangular fin and triple fins with and without oscillation. The investigation was also performed with different geometrical fin
The study of cohomology groups is one of the most intensive and exciting researches that arises from algebraic topology. Particularly, the dimension of cohomology groups is a highly useful invariant which plays a rigorous role in the geometric classification of associative algebras. This work focuses on the applications of low dimensional cohomology groups. In this regards, the cohomology groups of degree zero and degree one of nilpotent associative algebras in dimension four are described in matrix form.
In this study, the effect of intersecting ribs with inclined ribs on the heat transfer and flow characteristics of a high aspect ratio duct has been numerically investigated. The Relative roughness pitch (P/e) is 10 and the Reynolds number range from 35,700 to 72,800. ANSYS (Fluent-Workbench 18.0) software has been utilized to solve the Reynolds averaged Navier-Stokes (RANS) equations with the Standard k-ε turbulence model. Three ribbed models have been used in this study. Model 1 which is a just inclined ribs, Model 2 which has a single longitudinal rib at the center with inclined ribs and Model 3 which has two longitudinal ribs at the sides. The results showed that the heat transfer rate has been enhanced when the int
... Show More