A particular solution of the two and three dimensional unsteady state thermal or mass diffusion equation is obtained by introducing a combination of variables of the form,
η = (x+y) / √ct , and η = (x+y+z) / √ct, for two and three dimensional equations
respectively. And the corresponding solutions are,
θ (t,x,y) = θ0 erfc (x+y)/√8ct and θ( t,x,y,z) =θ0 erfc (x+y+z/√12ct)
This paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.
The problem of poverty and deprivation constitute a humanitarian tragedy and its continuation may threaten the political achievements reached by the State. Iraq, in particular, and although he is one of the very rich countries due to availability of huge economic wealth, poverty indicators are still high. In addition, the main factor in the decline in the standard of living due to the weakness of the government's performance in the delivery of public services of water, electricity and sanitation. Thus, the guide for human development has been addressed which express the achievements that the state can be achieved both on a physical level or on the human level, so in order to put appropriate strategies and policies aimed at elimin
... Show MoreIn this paper, the Adomian decomposition method (ADM) is successfully applied to find the approximate solutions for the system of fuzzy Fredholm integral equations (SFFIEs) and we also study the convergence of the technique. A consistent way to reduce the size of the computation is given to reach the exact solution. One of the best methods adopted to determine the behavior of the approximate solutions. Finally, the problems that have been addressed confirm the validity of the method applied in this research using a comparison by combining numerical methods such as the Trapezoidal rule and Simpson rule with ADM.
The power factors and electronic thermal conductivities in bismuth telluride (Bi2Te3), lead-telluride (PbTe), and gallium arsenide (GaAs) at room temperature (300K) quantum wires and quantum wells are theoretically investigated. Our formalism rigorously takes into account modification of these power factors and electronic thermal conductivities in free-surface wires and wells due to spatial confinement. From our numerical results, we predict a significant increase of the power factor in quantum wires with diameter w=20 Ã…. The increase is always stronger in quantum wires than in quantum wells of the corresponding dimensions. An unconfined phonon distribution assumed based on the bulk lattice thermal conductivity is then employed
... Show MoreIn this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.
Free boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the
The key objective of the study is to understand the best processes that are currently used in managing talent in Australian higher education (AHE) and design a quantitative measurement of talent management processes (TMPs) for the higher education (HE) sector.
The three qualitative multi-method studies that are commonly used in empirical studies, namely, brainstorming, focus group discussions and semi-structured individual interviews were considered. Twenty
In this work, we study two species of predator with two species of prey model, where the two species of prey live in two diverse habitats and have the ability to group-defense. Only one of the two predators tends to switch between the habitats. The mathematical model has at most 13 possible equilibrium points, one of which is the point of origin, two are axial, tow are interior points and the others are boundary points. The model with , where n is the switching index, is discussed regarding the boundedness of its solutions and the local stability of its equilibrium points. In addition, a basin of attraction was created for the interior point. Finally, three numerical examples were given to support the theoretical results.
Background/Aim: Endometrial abnormalities represent a diagnostic challenge due to overlapping imaging features with normal endometrium. Aim of this study was to assess accuracy of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging (MRI) in evaluation of endometrial lesions in comparison with T2 and to assess local staging validity and degree of myometrial invasion in malignancy. Methods: Forty patients with abnormal vaginal bleeding or sonographic thickened endometrial were recruited. MRI examination of pelvis was per-formed using 1.5 T scanner with a pelvic array coil. Conventional T1-and T2, dynamic contrast-enhanced (DCE) sequences and diffusion-weighted image (DWI) were performed. Results: Mean age of pa
... Show MoreIn this paper, we model the spread of coronavirus (COVID -19) by introducing stochasticity into the deterministic differential equation susceptible -infected-recovered (SIR model). The stochastic SIR dynamics are expressed using Itô's formula. We then prove that this stochastic SIR has a unique global positive solution I(t).The main aim of this article is to study the spread of coronavirus COVID-19 in Iraq from 13/8/2020 to 13/9/2020. Our results provide a new insight into this issue, showing that the introduction of stochastic noise into the deterministic model for the spread of COVID-19 can cause the disease to die out, in scenarios where deterministic models predict disease persistence. These results were also clearly ill
... Show More