The catalytic activity of faujasite type NaY catalysts prepared from local clay (kaolin) with different Si/Al ratio was studied using cumene cracking as a model for catalytic cracking process in the temperature range of 450-525° C, weight hourly space velocity (WHSV) of 5-20 h1, particle size ≤75μm and atmospheric pressure. The catalytic activity was investigated using experimental laboratory plant scale of fluidized bed reactor.
It was found that the cumene conversion increases with increasing temperature and decreasing WHSV. At 525° C and WHSV 5 h-1, the conversion was 42.36 and 35.43 mol% for catalyst with 3.54 Si/Al ratio and Catalyst with 5.75 Si/Al ratio, respectively, while at 450° C and at the same WHSV, the conversion was decreased to 29.15 and 21.86 mol% respectively, and the catalyst of 5.75 Si/Al ratio gave the higher cumene activity than the catalyst with 3.54 Si/Al ratio.
In this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.
We study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,
... Show MoreThe aim of research is to show the effect of Ferric Oxide (Fe2O3) on the electricity production and wastewater treatment, since 2.5% of Ferric Oxide (Fe2O3) (heated and non heated) nanoparticles has been used. Characterization of nanoparticles was done using X-ray Diffraction (XRD) and Scan Electron Microscopy (SEM). The influence of acidity was also studied on both wastewater treatmenton the Chemical Oxygen demand (COD) and Biological Oxygen Demand (BOD) and voltage output was studied. From the results, it was infused that the dosage of 0.025 g/l and an initial pH 7 were founded to be optimum for the effective degradation of effluents. The results concluded that the treatment of anaerobic sludge wastewater using Ferric Oxide (Fe2O3) in
... Show MoreThe surface finish of the machining part is the mostly important characteristics of products quality and its indispensable customers’ requirement. Taguchi robust parameters designs for optimizing for surface finish in turning of 7025 AL-Alloy using carbide cutting tool has been utilized in this paper. Three machining variables namely; the machining speeds (1600, 1900, and 2200) rpm, depth of cut (0.25, 0.50, 0.75) mm and the feed rates (0.12, 0.18, 0.24) mm/min utilized in the experiments. The other variables were considered as constants. The mean surface finish was utilized as a measuring of surface quality. The results clarified that increasing the speeds reduce the surface roughness, while it rises with increasing the depths and fee
... Show MoreFiber Bragg Grating has many advantages where it can be used as a temperature sensor, pressure sensor or even as a refractive index sensor. Designing each of this fiber Bragg grating sensors should include some requirements. Fiber Bragg grating refractive index sensor is a very important application. In order to increase the sensing ability of fiber Bragg gratings, many methods were followed. In our proposed work, the fiber Bragg grating was written in a D-shaped optical fiber by using a phase mask method with KrFexcimer. The resultant fiber Bragg grating has a high reflectivity 99.99% with a Bragg wavelength of 1551.2 nm as a best result obtained from a phase mask with a grating period of 1057 nm. In this work it was found that the rota
... Show MoreBackground The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etche
... Show MoreBackground: Due to the complicated and time-consuming physiological procedure of bone healing, certain graft materials have been frequently used to enhance the reconstruction of the normal bone architecture. However, owing to the limitations of these graft materials, some pharmaceutical alternatives are considered instead. Chitosan is a biopolymer with many distinguishing characteristics that make it one of the best materials to be used as a drug delivery system for simvastatin. Simvastatin is a cholesterol lowering drug, and an influencer in bone formation process, because it stimulates osteoblasts differentiation, bone morphogenic protein 2, and vascular endothelial growth factor. Objectives: histological, histochemical and histomorp
... Show MoreIn this study, simply supported reinforced concrete (RC) beams were analyzed using the Extended Finite Element Method (XFEM). This is a powerful method that is used for the treatment of discontinuities resulting from the fracture process and crack propagation in concrete. The mesoscale is used in modeling concrete as a two-phasic material of coarse aggregate and cement mortar. Air voids in the cement paste will also be modeled. The coarse aggregate used in the casting of these beams is a rounded aggregate consisting of different maximum sizes. The maximum size is 25 mm in the first model, and in the second model, the maximum size is 20 mm. The compressive strength used in these beams is equal to 26 MPa.
The subje
... Show MoreReseach target the most important topic, is Activity and ProfitabilityIndictors Analysis for
Nationality and Iraqi Insurance Company, In order to stand on them ability to cover its risks
and explore the efficiency asset and its avialible resources using to determine them abilities to
profit generation from its insurance activity. The analysis was focus to examine their profit
and activity power, and test the significant differences aming them performance. Test 2
hypothese that is related and result it sign that the 2 company no has significant differences at
profitability and activity level. The research depend on coneclusion, recommended two
company to work at efficiency with cost element of insurance activity in or