The solution gas-oil ratio is an important measurement in reservoir engineering calculations. The correlations are used when experimental PVT data from particular field are missing. Additional advantages of the correlations are saving of cost and time.
This paper proposes a correlation to calculate the solution gas -oil ratio at pressures below bubble point pressure. It was obtained by multiple linear regression analysis of PVT data collected from many Iraqi fields.
In this study, the solution gas-oil ratio was taken as a function of bubble point pressure, stock tank oil gravity, reservoir pressure, reservoir temperature and relative gas density.
The construction of the new correlation is depending on thirty seven PVT reports that were collected from Iraqi fields.
Statistical and graphical tools have been used to check the performance of the correlation. Correlation performance was also compared with previous published correlations.
The values of solution gas - oil ratio that were calculated from the new correlation have high accuracy when they were compared with the original laboratory data. Also, the results of the new correlation show high precision when compared with Standing [1], Vasquez and Beggs [2], Glaso [3], Al-Marhoun [4], Petrosky and Farshad [5], Kartoatmodjo and Schmidt [6], Velarde, Blasingame and McCain [7] and Mazandarani and Asghari [8] correlations.
We prepared polythiophene (PTH) with single wall carbon nanotube (SWCNT) nanocomposite thin films for Nitrogen dioxide (NO2) gas sensing applications. Thin films were synthesized via electrochemical polymerization method onto (Indium tin oxide) ITO coated glass substrate of thiophene monomer with magnesium perchlorate and different concentration from SWCNT (0.012 and 0.016) % in the presence130mL of Acetonitrile used. X-ray diffraction (XRD), Field Emission Scanning Electron microscopy (FE-SEM), Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to characterized these nanocomposite thin films. The response of these nanocomposite for NO2 gas was evaluated via monitoring the change
... Show MoreHygienic engineering has dedicated a lot of time and energy to studying water filtration because of how important it is to human health. Thorough familiarity with the filtration process is essential for the design engineer to keep up with and profit from advances in filtering technology and equipment as the properties of raw water continue to change. Because it removes sediment, chemicals, odors, and microbes, filtration is an integral part of the water purification process. The most popular technique for treating surface water for municipal water supply is considered fast sand filtration, which can be achieved using either gravity or pressure sand filters. Predicting the performance of units in water treatment plants is
... Show MoreHygienic engineering has dedicated a lot of time and energy to studying water filtration because of how important it is to human health. Thorough familiarity with the filtration process is essential for the design engineer to keep up with and profit from advances in filtering technology and equipment as the properties of raw water continue to change. Because it removes sediment, chemicals, odors, and microbes, filtration is an integral part of the water purification process. The most popular technique for treating surface water for municipal water supply is considered fast sand filtration, which can be achieved using either gravity or pressure sand filters. Predicting the performance of units in water treatment plants is a basic pri
... Show MorePrediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pr
... Show MorePrediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pressur
... Show MoreThe research aims to reveal the impact of media policy in Iraqi media outlets on the level of objectivity in these outlets. A study from the communicators’ point of view where the researcher used a survey method on the communicators in media outlets to reveal the extent of media policies knowledge as well as the pressures exerted by this policy on communicators in media outlets. It also reveals the extent of their commitment to objectivity, neutrality in dealing with information and the way used to transfer it.
The research sample included (179) respondents from communicators in a range of Media outlets such as (Press, Radio, and Television), The researcher was careful with the diversity of the sample, and
The Turonian-Lower Companian succession at Majnoon Oil Field is represented by the Khasib, Tanuma, and Saadi formations. Four major paleoenvironments were recognized within the studied succession, there are: Shallow open marine environment, shoal environment, deep marine environment, and basinal environment. They reflect deposition on a carbonate platform of homoclinal ramp setting. The studied succession represents two second order supersequences (A) and (B). Supersequence (A) includes both the Khasib and Tanuma formations. The Saadi Formation represents cycle (B). These second order cycles can be divided each into two third order cycles, This subdivision may reflect the effect of eustacy being the major controlling factor of cycles dev
... Show MoreExperiments were conducted to study axial liquid dispersion coefficient in slurry bubble column of 0.15 m inside diameter and 1.6 m height using perforated plate gas distributor of 54 holes of a size equal to 1 mm diameter and with a 0.24 free area of holes to the cross sectional area of the column. The three phase system consists of air, water and PVC used as the solid phase. The effect of solid loading (0, 30 and 60 kg/m3) and solid diameter (0.7, 1.5 and 3 mm) on the axial liquid dispersion coefficient at different axial location (25, 50 and 75 cm) and superficial gas velocity covered homogeneous-heterogeneous flow regime (1-10 cm/s) were studied in the present work. The results show that the axial liquid dispersion coeffic
... Show MoreIn the present work experiments were conducted to study the effect of solid loading (1,5 and 9 vol.%) on the enhancement of carbon dioxide absorption in bubble column at various volumetric gas flow rate (0.75, 1 and 1.5 m3/h) and absorbent concentration (caustic soda)( 0.1,0.5 and 1 M ). Activated carbon and alumina oxide (Al2O3) are used as solid particles. The Danckwerts method was used to calculate interfacial area and individual mass transfer coefficients during absorption of carbon dioxide in a bubble column. The results show that the absorption rate was increased with increasing volumetric gas flow rate, caustic soda concentration and solid loading. Mass transfer coefficient and interfac
... Show More
