Preferred Language
Articles
/
ijcpe-347
PARAMETRIC STUDY OF NATURAL CONVECTIVE AND RADIATIVE HEAT TRANSFER IN INCLINED CYLINDRICAL ANNULI
...Show More Authors

The unsteady state laminar mixed convection and radiation through inclined
cylindrical annulus is investigated numerically. The two heat transfer mechanisms of
convection and radiation are treated independently and simultaneously. The outer
cylinder was kept at a constant temperature while the inner cylinder was heated with
constant heat flux. The study involved numerical solution of the governing equations
which are continuity, momentum and energy equations using finite difference method
(FDM), where the body fitted coordinate system (BFC) was used to generate the grid
mesh for computational plane. A computer program (Fortran 90) was built to calculate
the bulk Nusselt number (Nub) after reaching steady state condition for fluid Prandtl
number fixed at (Pr =0.7) (for air) with radius ratio ( =1.5, 2.6, 5.0), Rayleigh number
(0≤Ra≤103),Reynolds number (50≤Re≤2000), dimensionless heat generation (0≤Q≤10),
Conduction-Radiation parameter (0≤N≤10), optical thickness (0 ≤ t

≤ 10) and different
annulus inclination with horizontal plane (0°≤δ≤90°). For the range of parameters
considered, results show that radiation enhance heat transfer. It is also indicated in the
results that Nu increase with the increasing of inclination angle δ, Ra, Re, and Q. The
correlation equations are concluded to describe the radiation effect.
Comparison of the result with the previous work shows a good agreement.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Mar 30 2013
Journal Name
Australian Journal Of Basic And Applied Sciences
CFD Simulation of Heat Transfer Augmentation in Constant Heat-Fluxed Tube fitted with Baffled Twisted Tape Inserts
...Show More Authors

Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Mixed Convection Heat Transfer in a Vertical Saturated Concentric Annulus Packed with a Metallic Porous Media
...Show More Authors

Mixed convection heat transfer in a vertical concentric annulus packed with a metallic porous media and heated at a constant heat flux is experimentally investigated with water as the working fluid. A series of experiments have been carried out with a Rayleigh number range from Ra=122418.92 to 372579.31 and Reynolds number that based on the particles diameter of Red=14.62, 19.48 and 24.36. Under steady state condition, the measured data were collected and analyzed. Results show that the wall surface temperatures are affected by the imposed heat flux variation and Reynolds number variation. The variation of the local heat transfer coefficient and the mean Nusselt number are presented and analyzed. An empirical

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Heat And Mass Transfer
Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review
...Show More Authors

View Publication
Scopus (239)
Crossref (245)
Scopus Clarivate Crossref
Publication Date
Sat Mar 04 2023
Journal Name
Baghdad Science Journal
Approximate Solution of Sub diffusion Bio heat Transfer Equation
...Show More Authors

In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Effect of Solid Particle Properties on Heat Transfer and Pressure Drop in Packed Duct
...Show More Authors

This work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
The Influence of the Preparation and Stability of Nanofluids for Heat Transfer
...Show More Authors

Recently the use of nanofluids represents very important materials. They are used in different branches like medicine, engineering, power, heat transfer, etc. The stability of nanofluids is an important factor to improve the performance of nanofluids with good results. In this research two types of nanoparticles, TiO2 (titanium oxide) and γ-Al2O3 (gamma aluminum oxide) were used with base fluid water. Two-step method were used to prepare the nanofluids. One concentration 0.003 vol. %, the nanoparticles were examined. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray diffraction (XRD) were used to accomplish these tests. The stability of the two types of nanofluids is measured by

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Experimental Investigation of Heat Transfer Enhancement in a Double Pipe Heat Exchanger Using Compound Technique of Transverse Vibration and Inclination Angle
...Show More Authors

Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Powell-Eyring Fluid Peristaltic Transfer in an Asymmetric Channel and A Porous Medium under the Influence of A Rotation and an Inclined Magnetic Field
...Show More Authors

     In this article, we investigate the peristaltic flow of a Powell-Eyring fluid flowing in an asymmetrical channel with an inclining magnetic field through a porous medium, and we focus on the impact that varying rotation has on this flow. Long wavelength and low Reynolds number are assumed, where the perturbation approach is used to solve the nonlinear governing equations in the Cartesian coordinate system to produce series solutions. Distributions of velocity and pressure gradients are expressed mathematically. The effect of these parameters is discussed and illustrated graphically through the set of figures. To get these numerical results, we used the math program MATHEMATICA.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Review on Heat Transfer Process Inside Open and Closed Porous Cavity
...Show More Authors

Many researchers used different methods in their investigations to enhance the heat transfer coefficient, one of these methods is using porous medium. Heat transfer process inside closed and open cavities filled with a fluid-saturated porous media has a considerable importance in different engineering applications, such as compact heat exchangers, nuclear reactors and solar collectors. So, the present paper comprises a review on natural, forced, and combined convection heat transfer inside a porous cavity with and without driven lid. Most of the researchers on this specific subject studied the effect of many parameters on the heat transfer and fluid field inside a porous cavity, like the angle of inclination, the presenc

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Advances In Mechanical Engineering
Experimental and Numerical Investigations of Heat Transfer Characteristics for Impinging Swirl Flow
...Show More Authors

This paper reports experimental and computational fluid dynamics (CFD) modelling studies to investigate the effect of the swirl intensity on the heat transfer characteristics of conventional and swirl impingement air jets at a constant nozzle-to-plate distance ( L = 2 D). The experiments were performed using classical twisted tape inserts in a nozzle jet with three twist ratios ( y = 2.93, 3.91, and 4.89) and Reynolds numbers that varied from 4000 to 16000. The results indicate that the radial uniformity of Nusselt number (Nu) of swirl impingement air jets (SIJ) depended on the values of the swirl intensity and the air Reynolds number. The results also revealed that the SIJ that was fitted with an insert of y = 4.89, which correspo

... Show More
View Publication
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref