Two types of adsorbents were used to treat oily wastewater, activated carbon and zeolite. The removal efficiencies of these materials were compared to each other. The results showed that activated carbon performed some better properties in removal of oil. The experimental methods which were employed in this investigation included batch and column studies. The former was used to evaluate the rate and equilibrium of carbon and zeolie adsorption, while the latter was used to determine treatment efficiencies and performance characteristics. Expanded bed adsorber was constructed in the column studies. In this study, the adsorption behavior of vegetable oil (corn oil) onto activated carbon and zeolite was examined as a function of the concentration of the adsorbate, contact time, adsorbent dosage and amount of coagulant salt(calcium sulphate) added . The adsorption data was modeled with Freundlich and Langmuir adsorption isotherms. and it was found that the adsorption process on activated carbon and zeolite fit the Freundlich isotherm model. The amount of oil adsorbed increased with increasing the contact time, but longer mixing duration did not increase residual oil removal from wastewater due to the coverage of the adsorbent surface with oil molecules. It was found that as the dosage of adsorbent increased, the percentage of residual oil removal also increased. The effects of adsorbent type and amount of coagulant salt(calcium sulphate) added on the breakthrough curve were studied in details in the column studies. Expanded bed behavior was modeled using the Richardson-Zaki correlation between the superficial velocity of the feed stream and the void fraction of the bed at moderate Reynolds number.
Simple and sensitive batch and Flow-injection spectrophotometric methods for the determination of Procaine HCl in pure form and in injections were proposed. These methods were based on a diazotization reaction of procaine HCl with sodium nitrite and hydrochloric acid to form diazonium salt, which is coupled with chromatropic acid in alkaline medium to form an intense pink water-soluble dye that is stable and has a maximum absorption at 508 nm. A graphs of absorbance versus concentration show that Beer’s law is obeyed over the concentration range of 1-40 and 5-400 µg.ml-1 of Procaine HCl, with detection limits of 0.874 and 3.75 µg.ml-1 of Procaine HCl for batch and FIA methods respectively. The FIA average sample throughput was 70 h-1. A
... Show MoreAlthough the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show MoreThis research include design and implementation of an Iraqi cities database using spatial data structure for storing data in two or more dimension called k-d tree .The proposed system should allow records to be inserted, deleted and searched by name or coordinate. All the programming of the proposed system written using Delphi ver. 7 and performed on personal computer (Intel core i3).
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreAssessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show MoreHome New Trends in Information and Communications Technology Applications Conference paper Audio Compression Using Transform Coding with LZW and Double Shift Coding Zainab J. Ahmed & Loay E. George Conference paper First Online: 11 January 2022 126 Accesses Part of the Communications in Computer and Information Science book series (CCIS,volume 1511) Abstract The need for audio compression is still a vital issue, because of its significance in reducing the data size of one of the most common digital media that is exchanged between distant parties. In this paper, the efficiencies of two audio compression modules were investigated; the first module is based on discrete cosine transform and the second module is based on discrete wavelet tr
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show More