Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability. Trend test was performed to ensure that the developed model would follow the physical laws. Results show that the developed model outperforms the published correlations in term of absolute average percent relative error of 6.5%, and correlation coefficient of 96%.
Background: Debonding and fracture of artificial teeth from denture bases are common clinical problem, bonding of artificial teeth to heat cure acrylic and high impact heat cure acrylic denture base materials with autoclave processing method is not well known. The aim of this study was to evaluate the effect of autoclave processing method on shear bond of artificial teeth to heat cure denture base material and high impact heat cure denture base material. Materials and methods: Heat polymerized (Vertex) and high impact acrylic (Vertex) acrylic resins were used. Teeth were processed to each of the denture base materials after the application of different surface treatments. The sample (which consist of artificial tooth attached to the dentur
... Show MoreAbstract
The government spending in Iraq and witnessed the changes and developments, especially after 2003, which outweighed consumer spending at the expense of capital expenditure and increased support and diversity of trends towards improving pension conditions for member
... Show MoreToday, the prediction system and survival rate became an important request. A previous paper constructed a scoring system to predict breast cancer mortality at 5 to 10 years by using age, personal history of breast cancer, grade, TNM stage and multicentricity as prognostic factors in Spain population. This paper highlights the improvement of survival prediction by using fuzzy logic, through upgrading the scoring system to make it more accurate and efficient in cases of unknown factors, age groups, and in the way of how to calculate the final score. By using Matlab as a simulator, the result shows a wide variation in the possibility of values for calculating the risk percentage instead of only 16. Additionally, the accuracy will be calculate
... Show MoreIn order to a chive the aim of the research the researcher chose the (Nebras kindergarten) to be the search sample .the member of the sampleFrom(males and fameless)and the researcher chose the class of(butterfly) as experimental group to do the pantomime consist of(15)males and fameless, and put(singles, senses ,double senses and communal senses)in the binging of the experiment the researcher applied the measurement of(AL Kaswany and other)as(pre_ test)which prepare to measure, the movement skills for kindergarten, the measurement have the validity and reliability to knowledge the difference between the two experiment. The experiment continue from(20/1/201to 20/2/2014)in the end of experiment the researcher applied the measurement of(AL
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreAbstract
That Iraq's dependence on the revenues of the oil product in financing its development programs and growth rates , Making the economy affected by external forces represented by fluctuations in crude oil prices in the global market, Which is directly reflected on the performance and efficiency of the Iraqi economy.
The study adopted its objectives to analyze the time series for the period (1988 - 2015) through the use of standard and statistical methods, Four standard models were estimated to reach those targets, Where the results of the stability test showed instability of most variables at their original level, But to achieve stability when taking the first differences, While the result
... Show MoreDiyala Governorate has many unique and diverse geomorphological features that the region enjoys, which are among the attractions for natural tourism, as the natural environment is considered a maker of tourism. The importance of geomorphological aspects as components of natural tourism is due to their association with tourism and entertainment, as a result of the enjoyment of many geomorphological aspects of the beauty of its natural landscape on the one hand, and on the other hand, the association of these manifestations with different types of tourism activity. Any tourist area as it is the main factor for tourist attractions, such as the presence of the Hamrin hills, and sand dunes. Planning for the development of tourism activity in the
... Show More