Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability. Trend test was performed to ensure that the developed model would follow the physical laws. Results show that the developed model outperforms the published correlations in term of absolute average percent relative error of 6.5%, and correlation coefficient of 96%.
Artificial pancreas is simulated to handle Type I diabetic patients under intensive care by automatically controlling the insulin infusion rate. A Backstepping technique is used to apply the effect of PID controller to blood glucose level since there is no direct relation between insulin infusion (the manipulated variable) and glucose level in Bergman’s system model subjected to an oral glucose tolerance test by applying a meal translated into a disturbance. Backstepping technique is usually recommended to stabilize and control the states of Bergman's class of nonlinear systems. The results showed a very satisfactory behavior of glucose deviation to a sudden rise represented by the meal that increase the blood glucose
... Show More
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreE-Health care system is one of the great technology enhancements via using medical devices through sensors worn or implanted in the patient's body. Wireless Body Area Network (WBAN) offers astonishing help through wireless transmission of patient's data using agreed distance in which it keeps patient's status always controlled by regular transmitting of vital data indications to the receiver. Security and privacy is a major concern in terms of data sent from WBAN and biological sensors. Several algorithms have been proposed through many hypotheses in order to find optimum solutions. In this paper, an encrypting algorithm has been proposed via using hyper-chaotic Zhou system where it provides high security, privacy, efficiency and
... Show MoreAbstract
Psoriasis is defined as a series of events that begins in its initial stage with dermatitis and then progresses to more widespread inflammation and increased oxidative stress. The aim of this study was to determine whether psoriasis and the levels of IL-15, IL-23, and TNF-α are related, the ELISA technique was used to detect the levels of inflammation in psoriasis patients and to compare them with healthy individuals. This study included 150 samples, including 90 patients with psoriasis and 60 healthy individuals, and the study was conducted from November 2021 to April 2022. The current study revealed that there was a significant difference in the level of TNF-α in the group of psoriasis patients compa
... Show MoreBackground: Inflammatory bowel disease (IBD) is a collection of chronic, recurrent inflammatory illnesses of the gastrointestinal system, including Crohn's disease (CD). Infliximab is one of the biological medications used to treat CD. Therapeutic drug monitoring has evolved as a treatment in IBD, aiming to optimize benefit while meeting more demanding, objective end criteria. Objective: To determine the achievement of target trough level (TL), develop anti-drug antibodies (ADAs) to infliximab, assess response to therapy, and study TL relations with different variables. Methods: The present study was cross-sectional and conducted from May 2022 to November 2022. It included 40 CD patients allotted into 2 groups: group 1 patients ach
... Show MoreA method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results hav
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreThis paper addresses the factors responsible for changes in crude oil prices, in real market and financial sector. In order to prepare the analytical background for further investigation, it highlights the patterns of correlations of the real oil price and the most related prices of assets, exchange rate and government bond yield. The paper reviews the statistical behavior of oil price, quantities and the global macroeconomic environment. Topics discussed include the theory of differential rent and scarcity effect ,the role of future market and speculation, strategies of energy of the major economies to investigate the prospects of oil market and the potential demand for OPEC's oil. The paper explores the
... Show More