Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability. Trend test was performed to ensure that the developed model would follow the physical laws. Results show that the developed model outperforms the published correlations in term of absolute average percent relative error of 6.5%, and correlation coefficient of 96%.
In this research , we study the inverse Gompertz distribution (IG) and estimate the survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes
In this research , we study the inverse Gompertz distribution (IG) and estimate the survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes
The most significant water supply, which is the basis of agriculture, industry and human and wildlife needs, is the river. In order to determine its suitability for drinking purposes, this study aims to measure the Water Quality Index (WQI) of the Tigris River in the Salah Al-Din Province (center of Tikrit), north of Baghdad. For ten (9) physio-chemical parameters, namely turbidity, total suspended sediments, PH, electrical conductivity, total dissolved solids, alkalinity, chloride, nitrogen as nitrate, sulphate, and then transported for examination to the laboratory, water samples were collected from 13 locations along the Tigris river. Using the weighted arithmetic index method, the WQI was measured and found to be 105,87 in up-stream, wh
... Show MoreThe development that solar energy will have in the next years needs a reliable estimation of available solar energy resources. Several empirical models have been developed to calculate global solar radiation using various parameters such as extraterrestrial radiation, sunshine hours, albedo, maximum temperature, mean temperature, soil temperature, relative humidity, cloudiness, evaporation, total perceptible water, number of rainy days, and altitude and latitude. In present work i) First part has been calculated solar radiation from the daily values of the hours of sun duration using Angstrom model over the Iraq for at July 2017. The second part has been mapping the distribution of so
In this study light elements 10B , 10Be for 10B(n,p)10Be reaction as well as proton energy from 0.987 MeV to 2.028 MeV with threshold energy (1.04MeV) are used according to the available data of reaction cross sections. The more recent cross sections data of 10Be(p,n)10B reaction is reproduced in fin steps in the specified energy range , as well as cross section (p,n) values were derived from the published data of (n,p) as a function of energy in the same fine energy steps by using the reciprocity theory of principle inverse reaction . This calculation involves only the first excited state of 10B , 10Be in the reactions 10Be(p,n)10B and 10B(n,p)10Be.
The aim of this research is to measure the changes of Iraqi Marshland's area as well as the changes in the spectral reflectivity water quality, analyzing seasonal difference in AL-Hawizah marshes, South of Iraq using Geographic Information Systems (GIS) and remote sensing techniques. For this paper, the samples were taken at 10 sites along the study area. Satellite images of the 8 Landsat on 20/5/2017, 8/8/2017, 11/10/2017 and 14/12/2017 have been selected in order to study the seasonal changes on the marshes took place during 2017. The reflectance values of red, green, blue and near infrared bands showed that are significantly associated with a seasonal factor. All bands show that reflectivity of the marsh has been affected by locationa
... Show MoreWater has a great self-generating capacity that can neutralize the polluting interventions carried out by humans. However, if human activities continue this uncontrolled and unsustainable exploitation of this resource, this regenerating capacity shall fail and it will be jeopardized definitively. Shatt Al-Arab River in South of Iraq. It has an active role in providing water for irrigation, industry, domestic use and a commercial gateway to Iraq. in the last five years Shatt Al-Arab suffered from a rise in pollutants due to the severe decline in sewage networks, irregular networks and pesticide products, as well as the outputs of factories and companies that find their way to water sou
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show More