Anaerobic digestion (AD) is the most common process for dealing with primary and secondary wastewater sludge. In the present work, four pre-treatment methods (ultrasonic, chemical, thermal, and thermo-chemical) are investigated in Al-Rustumya Wastewater Treatment plant in order to find their effect on biogas production and volatile solid removal efficiency during anaerobic digestion.
Two frequencies of ultrasonic wave were used 30 KHz and 50 KHz during the pre-treatment. Sodium hydroxide was added in different amounts to give three pH values of 9, 10 and 11 in chemical pre-treating processes. The sludge was heated at 60oC and 80oC through thermal pre-treatment experiment. Also, the sludge was treated thermo-chemically at 80 oC and pH 11 prior to anaerobic digestion. Maximum biogas production (6009 ml) was obtained at ultrasonic pre-treatment method with 30 kHz. The volumetric ratio of produced biogas to the initial volume of sludge is about 4:1.
The degradation performance of aqueous solution of pesticide Alachlor has been studied at solar pilot scale plant in two photocatalytic systems: homogeneous photocatalysis by photo-Fenton and heterogeneous photocatalysis with titanium dioxide. The pilot scale system included of compound parabolic collectors specially designed for solar photocatalytic applications, and installed at University of Baghdad, Department of Environmental Engineering back yard. The influence of different concentrations, H2O2 (200-2400 mg/l), Fe+2(5- 30 mg/l) and TiO2 (100-500 mg/l) and their relationship with the degradation efficiency were studied.
The COD removal efficienc
... Show MoreA study was performed to evaluate heavy metals removal from sewage sludge using lime. The processes of stabilization using alkaline chemicals operating on a simple principle of raising pH to 12 or higher, with sufficient mixing and suitable contact time to ensure that immobilization can reduce heavy metals. A 0.157 m3 tank was designed to treat Al-Rustemeyia wastewater treatment plant sludge. Characteristics of raw sludge were examined through two parameters: pH and heavy metal analysis. Different lime doses of (0- 25) g CaO/100 g sludge were mixed manually with raw sludge in a rotating drum. The samples were analyzed two hours after mixing. pH and heavy metals results were compared with EPA and National Iraqi Stand
... Show MoreIn order to reduce the environmental pollution associated with the conventional energy sources and to achieve the increased global energy demand, alterative and renewable sustainable energy sources need to be developed. Microbial fuel cells (MFCs) represent a bio-electrochemical innovative technology for pollution control and a simultaneous sustainable energy production from biodegradable, reduced compounds. This study mainly considers the performance of continuous up flow dual-chambers MFC
fueled with actual domestic wastewater and bio-catalyzed with anaerobic aged sludge obtained from an aged septic tank. The performance of MFCs was mainly evaluated in terms of COD reductions and electrical power output. Results revealed that the C
This paper presents a comparative study between different oil production enhancement scenarios in the Saadi tight oil reservoir located in the Halfaya Iraqi oil field. The reservoir exhibits poor petrophysical characteristics, including medium pore size, low permeability (reaching zero in some areas), and high porosity of up to 25%. Previous stimulation techniques such as acid fracturing and matrix acidizing have yielded low oil production in this reservoir. Therefore, the feasibility of hydraulic fracturing stimulation and/or horizontal well drilling scenarios was assessed to increase the production rate. While horizontal drilling and hydraulic fracturing can improve well performance, they come with high costs, often accounting for up t
... Show MoreIron–phthalocyanine (FePc) organic photoconductive detector was fabricated using pulsed laser deposition (PLD) technique to work in ultraviolet (UV) and visible regions. The organic semiconductor material (iron phthalocyanine) was deposited on n-type silicon wafer (Si) substrates at different thicknesses (100, 200 and 300) nm. FePc organic photoconductive detector has been improved by two methods: the first is to manufacture the detector on PSi substrates, and the second is by coating the detector with polyamide–nylon polymer to enhance the photoconductivity of the FePc detector. The current–voltage (I–V) characteristics, responsivity, photocurrent gain, response time and the quantum efficiency of the fabricated photoconduc
... Show MoreSewage sludge samples were collected from Al-rasafa and Al-karkh refinement stations which represent the main stations of Baghdad city. Samples were collected from all treatment stages: before, after, and during refinement processes. The High Purity Germanium Coaxial Detector system with energy resolution 1.8 keV for energy line 1333 keV of Co – 60 radioactive sources was used to measure radioactivity from both natural and artificial sources. GENIE – 2000 analysis the results statistically and qualitatively. The results showed that all sewage sludge samples exhibited natural radioactive level and sometimes less than the international regular standards, but Al–Karkh station showed increment in radioactive levels than Al– Rasa
... Show MoreIn this research, the degradation of Dazomet has been studied by using thermal Fenton process and photo-Fenton processes under UV and lights sun. The optimum values of amounts of the Fenton reagents have been determined (0.07g FeSO4 .7H2O, 3.5µl H2O2) at 25 °C and at pH 7 where the degradation percentages of Dazomet were recorded high. It has been found that solar photo Fenton process was more effective in degradation of Dazomet than photo-Fenton under UV-light and thermal Fenton processes, the percentage of degradation of Dazomet by photo-Fenton under sun light are 88% and 100% at 249 nm and 281 nm respectively, while the percentages of degradation for photo-Fenton under UV-light are 87%, 96% and for thermal Fenton are 70% and 66.8% at 2
... Show MoreAn experimental and theoretical study has been done to investigate the thermal performance of different types of air solar collectors, In this work air solar collector with a dimensions of (120 cm x90 cm x12 cm) , was tested under climate condition of Baghdad city with a (43° tilt angel) by using the absorber plate (1.45 mm thickness, 115 cm height x 84 cm width), which was manufactured from iron painted with a black matt.
The experimental test deals with five types of absorber:-
Conventional smooth flat plate absorber , Finned absorber , Corrugated absorber plate, Iron wire mesh on absorber And matrix of porous media on absorber .
The hourly and average efficiency of the collectors
... Show More