This research was aimed to study the efficiency of microfiltration membranes for the treatment of oily wastewater and the factors affecting the performance of the microfiltration membranes experimental work were includes operating the microfiltration process using polypropylene membrane (1 micron) and ceramic membrane (0.5 micron) constructed as candle; two methods of operation were examined: dead end and cross flow. The oil emulsion was prepared using two types of oils: vegetable oil and motor oil (classic oil 20W-50). The operating parameters studied are: feed oil concentration 50 – 800 mg/l, feed flow rate 10 – 40 l/h, and temperature 30 – 50 oC, for dead end and cross flow microfiltration.
It was found that water flux decreases with increasing operating time and feed oil concentration and increases with increasing operating temperature, feed flow rate and pore size of membrane. Also, it was found that rejection percentage of oil increases with increasing flow rate and rejection percentage decreases with increasing time, feed oil concentration, feed temperature and pore size of membrane for dead end and cross flow microfiltration. In cross flow microfiltration, reject concentration (concentrate) increases with increasing flow rate, feed concentration, time and feed temperature. The dead end filter has more flux compared to cross flow filter, while, in cross flow the oil rejection percentage is best than dead end. Flux for vegetable oil is more than motor oil but rejection percentage for vegetable oil is less than that for motor oil. The highest recovery ratio was found is 44.8% for cross flow process with recirculation of concentrating stream to feed vessel. The highest rejection percentage of oil was found is 98 % and 97.8 % for cross flow and dead ends respectively.
The demand on energy sources throughout the world have led to an increase in the production processes of crude oil which is considered to be the main source of energy, without considering the impact on the environment. The objective of this study is to evaluate the environmental impact of drilling processes and crude oil spillage on soil in the Rumaila oil field, Basra, Southern Iraq. An investigation was undertaken to determine the content of Polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals in the soil. Ten soil samples were collected near oil wells and analyzed. The results showed a high concentration of PAHsin the soil, particularly (Acenaphthene, Fluorene, Anthracene, Fluoranthene and Pyrene) due to crude oil spillage. The he
... Show MoreThe study intends to interpretation of well logs to determine the petrophysical parameters for Khasib, Tanuma, and Sa'di formations in Halfaya Oil Field. Where this field is located 30 kilometers south-east of the Amara city and it is considered as one of the important fields in Iraq because of the high production of oil, because Khasib, Tanuma, and Sa'di are f carbonates reservoirs formations and important after the Mishrif Formation because of the lack of thickness of the formations compared to the amount of oil production. The Matrix Identification (MID) and the M-N crossplot were used to determine the lithology and mineralogy of the formations; through the diagrm it was found the three formations consisted mainly of calcite with some
... Show MoreThe State company for vegetable oils industry one of the most dynamic
companies in the Iraqi economy and is one of the companies manufacturing(food) that takes astrategic dimension and production within the concept of food security, this as well as to reduce dependence on imports and operation of national manpower.This study aims to describe the performance of the State company for vegetable oils industry for the period (2003-2007) which was characterized by economic and security instability of the country and give an accurate picture of their efficiency and their capacity to produce during this Period.
Background: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi
... Show MoreThis work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the effect of the catalyst -to- oil ratio parameter on catalytic cracking process of heavy vacuum gas oil feed at constant temperature (450 °C). The first step of this treatment was, catalytic cracking of this material by constructed batch reactor occupied with auxiliary control devices, at selective range of the catalyst –to- oil ratio parameter ( 2, 2.5, 3 and 3.5) respectively. The conversion of heavy vacuum gas
... Show MoreThis research consists of two parts, the first part concern with analyzing the collected data of BOD and COD values in discharge waste water from Al-Dora refinery during 2010 to find the relationship between these two variables The results indicates that there is a high correlation between BOD and COD when using a natural logarithm model (0.86 ln(COD)) with correlation coefficient of 0.98. This relationship is useful in predicting the BOD value using the COD value. The second part includes analyzing collected data from the same site in order to find a relationsip between BOD and other parameters COD, Phenol(phe), Temperature(T), Oil, Sulphat(SO4),pH and Total dissolved solids( TDS) discharged from the refinery. The results indicated that th
... Show MoreThis research consists of two parts, the first part concern with analyzing the collected data of BOD and COD values in discharge waste water from Al-Dora refinery during 2010 to find the relationship between these two variables The results indicates that there
is a high correlation between BOD and COD when using a natural logarithm model (0.86 ln(COD)) with correlation coefficient of 0.98. This relationship is useful in predicting the BOD value using the COD value. The second part includes analyzing collected data from the same site in order to find a relationsip between BOD and other parameters COD, Phenol(phe), Temperature(T), Oil, Sulphat(SO4),pH and Total dissolved solids( TDS) discharged from the refinery. The results indicated
Heavy metals especially lead (Pb), cadmium (Cd), chromium (Cr) and copper (Cu) are noxious pollutants with immense health hazards on living organisms, these pollutants enter aquatic environment in Iraq mainly Tigris and Euphrates rivers via waste water came from different anthropological activities, This study investigated capacity of dried and ground root of water hyacinth (Eichhornia crassipes) in removing the heavy metals from their aqueous solutions. Effects of initial concentrations of the heavy metals and pH of their aqueous solutions were studied. Results of this study revealed excellent biosorption capacity of water hyacinth root in general, removal of Pb was the highest and Cr was lowest. The results showed that the Pb, Cu and C
... Show More