This research was aimed to study the efficiency of microfiltration membranes for the treatment of oily wastewater and the factors affecting the performance of the microfiltration membranes experimental work were includes operating the microfiltration process using polypropylene membrane (1 micron) and ceramic membrane (0.5 micron) constructed as candle; two methods of operation were examined: dead end and cross flow. The oil emulsion was prepared using two types of oils: vegetable oil and motor oil (classic oil 20W-50). The operating parameters studied are: feed oil concentration 50 – 800 mg/l, feed flow rate 10 – 40 l/h, and temperature 30 – 50 oC, for dead end and cross flow microfiltration.
It was found that water flux decreases with increasing operating time and feed oil concentration and increases with increasing operating temperature, feed flow rate and pore size of membrane. Also, it was found that rejection percentage of oil increases with increasing flow rate and rejection percentage decreases with increasing time, feed oil concentration, feed temperature and pore size of membrane for dead end and cross flow microfiltration. In cross flow microfiltration, reject concentration (concentrate) increases with increasing flow rate, feed concentration, time and feed temperature. The dead end filter has more flux compared to cross flow filter, while, in cross flow the oil rejection percentage is best than dead end. Flux for vegetable oil is more than motor oil but rejection percentage for vegetable oil is less than that for motor oil. The highest recovery ratio was found is 44.8% for cross flow process with recirculation of concentrating stream to feed vessel. The highest rejection percentage of oil was found is 98 % and 97.8 % for cross flow and dead ends respectively.
Epithelial mesenchymal transition (EMT) is a process comprising cellular and molecular events which result in cells shifting from an epithelial to a mesenchymal phenotype. Periodontitis is a destructive chronic disease of the periodontium initiated in response to a dysbiotic microbiome, and dominated by Gram-negative bacteria in the subgingival niches accompanied by an aberrant immune response in susceptible subjects. Both EMT and periodontitis share common risk factors and drivers, including Gram-negative bacteria, excess inflammatory cytokine production, smoking, oxidative stress and diabetes mellitus. In addition, periodontitis is characterized by down-regulation of key epithelial markers such as E-cadherin together with up-regulation of
... Show MoreScheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreInduced EF is among the most important of advanced oxidation processes (AOPs) It was employed to treat different kinds of wastewater. In the present review, the types and mechanism of induced EF were outlined. Parameters affecting this process have been mentioned with details. These are current density, pH, H2O2 concentration, and time. The application of induced electro Fenton in various sectors of industries like textile, petroleum refineries, and pharmaceutical were outlined. The outcomes of this review demonstrate the vital role of induced EF in treatment of wastewater at high efficiency and low cost in contrast with conventional technique
This study successfully synthesized high-performance photodetectors based on Ag-WO3 core–shell heterostructures using a simple and economical two-step pulsed laser ablation in water method and has investigated the electrical characteristics of the Ag@WO3 nanocomposite heterojunction. The Hall effect tests indicate that the synthesized Ag@WO3 exhibits n-type conduction with a Hall mobility of 1.25 × 103 cm2V-1S-1. Dark current–voltage properties indicated that the created heterojunctions displayed rectification capabilities, with the highest rectification factor of around 1.71 seen at a 5 V bias. A photodetector’s responsivity reveals the existence of two response peaks, which are situated in the ultraviolet and visible region. The ph
... Show More