This research was aimed to study the efficiency of microfiltration membranes for the treatment of oily wastewater and the factors affecting the performance of the microfiltration membranes experimental work were includes operating the microfiltration process using polypropylene membrane (1 micron) and ceramic membrane (0.5 micron) constructed as candle; two methods of operation were examined: dead end and cross flow. The oil emulsion was prepared using two types of oils: vegetable oil and motor oil (classic oil 20W-50). The operating parameters studied are: feed oil concentration 50 – 800 mg/l, feed flow rate 10 – 40 l/h, and temperature 30 – 50 oC, for dead end and cross flow microfiltration.
It was found that water flux decreases with increasing operating time and feed oil concentration and increases with increasing operating temperature, feed flow rate and pore size of membrane. Also, it was found that rejection percentage of oil increases with increasing flow rate and rejection percentage decreases with increasing time, feed oil concentration, feed temperature and pore size of membrane for dead end and cross flow microfiltration. In cross flow microfiltration, reject concentration (concentrate) increases with increasing flow rate, feed concentration, time and feed temperature. The dead end filter has more flux compared to cross flow filter, while, in cross flow the oil rejection percentage is best than dead end. Flux for vegetable oil is more than motor oil but rejection percentage for vegetable oil is less than that for motor oil. The highest recovery ratio was found is 44.8% for cross flow process with recirculation of concentrating stream to feed vessel. The highest rejection percentage of oil was found is 98 % and 97.8 % for cross flow and dead ends respectively.
General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreThe biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order t
... Show MoreThis research aims to test the ability of glass waste powder to adsorb cadmium from aqueous solutions. The glass wastes were collected from the Glass Manufacturing Factory in Ramadi. The effect of concentration and reaction time on sorption was tested through a series of laboratory experiments. Four Cd concentrations (20, 40, 60, and 80) as each concentration was tested ten times for 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 min. Solid (glass wastes) to liquid was 2g to 30ml was fixed in each experiment where the total volume of the solution was 30ml. The pH, total dissolved salts and electrical conductivity were measured at 30ºC. The equilibrium concentration was determined at 25 minutes, thereafter it was noted that the sorption
... Show More